See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d0d3219d67d1d336_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d0d3219d67d1d336_train_data.json
type:
field_input: example
field_instruction: inputs
field_output: targets
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/f70b4883-b668-4cbb-8a8f-d4c08af5b131
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/d0d3219d67d1d336_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: 032c6e34-0d7f-46e8-83af-920b34189fa4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 032c6e34-0d7f-46e8-83af-920b34189fa4
warmup_steps: 20
weight_decay: 0.015
xformers_attention: false
f70b4883-b668-4cbb-8a8f-d4c08af5b131
This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 153
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3756 | 0.0196 | 1 | 10.3755 |
10.3607 | 0.9816 | 50 | 10.3597 |
10.92 | 1.9644 | 100 | 10.3486 |
11.2809 | 2.9472 | 150 | 10.3471 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for eddysang/f70b4883-b668-4cbb-8a8f-d4c08af5b131
Base model
HuggingFaceM4/tiny-random-LlamaForCausalLM