Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: codellama/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - aa051603106968ea_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/aa051603106968ea_train_data.json
  type:
    field_input: formatted_prompt
    field_instruction: prompt
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/ebe29838-4ce1-4d94-a292-2f6c817d46f4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/aa051603106968ea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: c243261f-2131-489a-bfa5-15f787947517
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c243261f-2131-489a-bfa5-15f787947517
warmup_steps: 20
weight_decay: 0.015
xformers_attention: false

ebe29838-4ce1-4d94-a292-2f6c817d46f4

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0011 1 nan
0.0 0.0549 50 nan
0.0 0.1099 100 nan
0.0 0.1648 150 nan
0.0 0.2198 200 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for eddysang/ebe29838-4ce1-4d94-a292-2f6c817d46f4

Adapter
(547)
this model