See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: elyza/Llama-3-ELYZA-JP-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a3c5d8b320c8afde_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a3c5d8b320c8afde_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: null
eval_max_new_tokens: 128
eval_strategy: steps
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/e67de51e-8d46-4281-a590-74edc07323ee
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/a3c5d8b320c8afde_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: df6bf9d4-a987-43b4-acb3-402a434df76e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: df6bf9d4-a987-43b4-acb3-402a434df76e
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
e67de51e-8d46-4281-a590-74edc07323ee
This model is a fine-tuned version of elyza/Llama-3-ELYZA-JP-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5872
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.3243 |
1.262 | 0.0017 | 9 | 0.9494 |
0.8572 | 0.0033 | 18 | 0.7848 |
0.7654 | 0.0050 | 27 | 0.7108 |
0.6711 | 0.0067 | 36 | 0.6733 |
0.6452 | 0.0083 | 45 | 0.6472 |
0.6194 | 0.0100 | 54 | 0.6276 |
0.6104 | 0.0117 | 63 | 0.6112 |
0.6108 | 0.0133 | 72 | 0.6009 |
0.5846 | 0.0150 | 81 | 0.5924 |
0.591 | 0.0166 | 90 | 0.5882 |
0.6007 | 0.0183 | 99 | 0.5872 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for eddysang/e67de51e-8d46-4281-a590-74edc07323ee
Base model
elyza/Llama-3-ELYZA-JP-8B