SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the telecom-qa-multiple_choice dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What should the AP or PCP do if it is not decentralized AP or PCP clustering capable or a decentralized AP or PCP cluster is not present?',
'If the AP or PCP is not decentralized AP or PCP clustering capable or a decentralized AP or PCP cluster is not present, it should set its Cluster Member Role to 0 (not currently participating in a cluster) and remain unclustered.',
'When a Data, Management or Extension frame is received, a STA inserts it in an appropriate cache.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
telecom-ir-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9657 |
cosine_accuracy@3 | 0.9924 |
cosine_accuracy@5 | 0.9931 |
cosine_accuracy@10 | 0.9939 |
cosine_precision@1 | 0.9657 |
cosine_recall@1 | 0.9657 |
cosine_ndcg@10 | 0.9824 |
cosine_mrr@10 | 0.9784 |
cosine_map@100 | 0.9786 |
Training Details
Training Dataset
telecom-qa-multiple_choice
- Dataset: telecom-qa-multiple_choice at 73aebbb
- Size: 6,552 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.95 tokens
- max: 49 tokens
- min: 9 tokens
- mean: 29.33 tokens
- max: 112 tokens
- Samples:
anchor positive What is the goal of a jammer in a mobile edge caching system?
The goal of a jammer in a mobile edge caching system is to interrupt ongoing radio transmissions of the edge node with cached chunks or caching users and prevent access to cached content. Additionally, jammers aim to deplete the resources of edge nodes, caching users, and sensors during failed communication attempts.
Which type of DRL uses DNNs (Deep Neural Networks) to fit action values and employs experience replay and target networks to ensure stable training convergence?
Value-based DRL, such as Deep Q-Learning (DQL), uses DNNs to fit action values and employs experience replay and target networks to ensure stable training convergence.
What is the relationship between the curvature of the decision boundary and the robustness of a network?
The lower the curvature of the decision boundaries, the more robust the network.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
telecom-qa-multiple_choice
- Dataset: telecom-qa-multiple_choice at 73aebbb
- Size: 6,552 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.87 tokens
- max: 56 tokens
- min: 8 tokens
- mean: 29.45 tokens
- max: 91 tokens
- Samples:
anchor positive Which forward error correction (FEC) codes are available for the THz single carrier mode?
The THz single carrier mode (THz-SC PHY) in the IEEE 802.15.3d standard supports two low-density parity-check (LDPC) codes: 14/15 LDPC (1440,1344) and 11/15 LDPC (1440,1056).
Which multiple access technique allows users to access the channel simultaneously using the same frequency and time resources, with different power levels?
Non-Orthogonal Multiple Access (NOMA) allows users to access the channel simultaneously using the same frequency and time resources, but with different power levels.
What is the power gain when doubling the number of antennas?
Doubling the number of antennas yields a 3-dB power gain.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512weight_decay
: 0.01num_train_epochs
: 15lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
---|---|---|---|---|
1.2727 | 15 | 1.0332 | 0.0968 | 0.9725 |
2.5455 | 30 | 0.2091 | 0.0518 | 0.9808 |
3.8182 | 45 | 0.0997 | 0.0470 | 0.9824 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 55
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for dinho1597/bge-small-qa-telecom-ft
Base model
BAAI/bge-small-en-v1.5Dataset used to train dinho1597/bge-small-qa-telecom-ft
Evaluation results
- Cosine Accuracy@1 on telecom ir evalself-reported0.966
- Cosine Accuracy@3 on telecom ir evalself-reported0.992
- Cosine Accuracy@5 on telecom ir evalself-reported0.993
- Cosine Accuracy@10 on telecom ir evalself-reported0.994
- Cosine Precision@1 on telecom ir evalself-reported0.966
- Cosine Recall@1 on telecom ir evalself-reported0.966
- Cosine Ndcg@10 on telecom ir evalself-reported0.982
- Cosine Mrr@10 on telecom ir evalself-reported0.978
- Cosine Map@100 on telecom ir evalself-reported0.979