lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6894
  • Answer: {'precision': 0.7383073496659243, 'recall': 0.8115055079559363, 'f1': 0.7731778425655977, 'number': 817}
  • Header: {'precision': 0.09090909090909091, 'recall': 0.01680672268907563, 'f1': 0.028368794326241134, 'number': 119}
  • Question: {'precision': 0.7214170692431562, 'recall': 0.8319405756731661, 'f1': 0.7727468736524363, 'number': 1077}
  • Overall Precision: 0.7220
  • Overall Recall: 0.7755
  • Overall F1: 0.7478
  • Overall Accuracy: 0.7574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3948 5.2632 100 0.6894 {'precision': 0.7383073496659243, 'recall': 0.8115055079559363, 'f1': 0.7731778425655977, 'number': 817} {'precision': 0.09090909090909091, 'recall': 0.01680672268907563, 'f1': 0.028368794326241134, 'number': 119} {'precision': 0.7214170692431562, 'recall': 0.8319405756731661, 'f1': 0.7727468736524363, 'number': 1077} 0.7220 0.7755 0.7478 0.7574
0.3743 10.5263 200 0.7426 {'precision': 0.7905982905982906, 'recall': 0.9057527539779682, 'f1': 0.8442669709070165, 'number': 817} {'precision': 0.4691358024691358, 'recall': 0.31932773109243695, 'f1': 0.37999999999999995, 'number': 119} {'precision': 0.8246205733558178, 'recall': 0.9080779944289693, 'f1': 0.8643393725143613, 'number': 1077} 0.7971 0.8723 0.8330 0.7807
0.1593 15.7895 300 0.8605 {'precision': 0.8204570184983678, 'recall': 0.9228886168910648, 'f1': 0.868663594470046, 'number': 817} {'precision': 0.43125, 'recall': 0.5798319327731093, 'f1': 0.49462365591397855, 'number': 119} {'precision': 0.8476104598737602, 'recall': 0.872794800371402, 'f1': 0.8600182982616651, 'number': 1077} 0.8058 0.8758 0.8393 0.7764
0.0816 21.0526 400 0.9635 {'precision': 0.8474970896391153, 'recall': 0.8910648714810282, 'f1': 0.8687350835322196, 'number': 817} {'precision': 0.5490196078431373, 'recall': 0.47058823529411764, 'f1': 0.5067873303167422, 'number': 119} {'precision': 0.8643919510061242, 'recall': 0.9173630454967502, 'f1': 0.8900900900900901, 'number': 1077} 0.8422 0.8803 0.8608 0.7885
0.0611 26.3158 500 0.9700 {'precision': 0.8224719101123595, 'recall': 0.8959608323133414, 'f1': 0.8576449912126538, 'number': 817} {'precision': 0.5566037735849056, 'recall': 0.4957983193277311, 'f1': 0.5244444444444444, 'number': 119} {'precision': 0.8679750223015165, 'recall': 0.903435468895079, 'f1': 0.8853503184713377, 'number': 1077} 0.8333 0.8763 0.8542 0.7819

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cpu
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for dharmik3005/lilt-en-funsd

Finetuned
(47)
this model