lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6894
- Answer: {'precision': 0.7383073496659243, 'recall': 0.8115055079559363, 'f1': 0.7731778425655977, 'number': 817}
- Header: {'precision': 0.09090909090909091, 'recall': 0.01680672268907563, 'f1': 0.028368794326241134, 'number': 119}
- Question: {'precision': 0.7214170692431562, 'recall': 0.8319405756731661, 'f1': 0.7727468736524363, 'number': 1077}
- Overall Precision: 0.7220
- Overall Recall: 0.7755
- Overall F1: 0.7478
- Overall Accuracy: 0.7574
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.3948 | 5.2632 | 100 | 0.6894 | {'precision': 0.7383073496659243, 'recall': 0.8115055079559363, 'f1': 0.7731778425655977, 'number': 817} | {'precision': 0.09090909090909091, 'recall': 0.01680672268907563, 'f1': 0.028368794326241134, 'number': 119} | {'precision': 0.7214170692431562, 'recall': 0.8319405756731661, 'f1': 0.7727468736524363, 'number': 1077} | 0.7220 | 0.7755 | 0.7478 | 0.7574 |
0.3743 | 10.5263 | 200 | 0.7426 | {'precision': 0.7905982905982906, 'recall': 0.9057527539779682, 'f1': 0.8442669709070165, 'number': 817} | {'precision': 0.4691358024691358, 'recall': 0.31932773109243695, 'f1': 0.37999999999999995, 'number': 119} | {'precision': 0.8246205733558178, 'recall': 0.9080779944289693, 'f1': 0.8643393725143613, 'number': 1077} | 0.7971 | 0.8723 | 0.8330 | 0.7807 |
0.1593 | 15.7895 | 300 | 0.8605 | {'precision': 0.8204570184983678, 'recall': 0.9228886168910648, 'f1': 0.868663594470046, 'number': 817} | {'precision': 0.43125, 'recall': 0.5798319327731093, 'f1': 0.49462365591397855, 'number': 119} | {'precision': 0.8476104598737602, 'recall': 0.872794800371402, 'f1': 0.8600182982616651, 'number': 1077} | 0.8058 | 0.8758 | 0.8393 | 0.7764 |
0.0816 | 21.0526 | 400 | 0.9635 | {'precision': 0.8474970896391153, 'recall': 0.8910648714810282, 'f1': 0.8687350835322196, 'number': 817} | {'precision': 0.5490196078431373, 'recall': 0.47058823529411764, 'f1': 0.5067873303167422, 'number': 119} | {'precision': 0.8643919510061242, 'recall': 0.9173630454967502, 'f1': 0.8900900900900901, 'number': 1077} | 0.8422 | 0.8803 | 0.8608 | 0.7885 |
0.0611 | 26.3158 | 500 | 0.9700 | {'precision': 0.8224719101123595, 'recall': 0.8959608323133414, 'f1': 0.8576449912126538, 'number': 817} | {'precision': 0.5566037735849056, 'recall': 0.4957983193277311, 'f1': 0.5244444444444444, 'number': 119} | {'precision': 0.8679750223015165, 'recall': 0.903435468895079, 'f1': 0.8853503184713377, 'number': 1077} | 0.8333 | 0.8763 | 0.8542 | 0.7819 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cpu
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dharmik3005/lilt-en-funsd
Base model
SCUT-DLVCLab/lilt-roberta-en-base