|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
tags: |
|
- SDQP |
|
- scholarly |
|
- citation_count_prediction |
|
- review_score_prediction |
|
dataset_info: |
|
features: |
|
- name: paperhash |
|
dtype: string |
|
- name: s2_corpus_id |
|
dtype: string |
|
- name: arxiv_id |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: abstract |
|
dtype: string |
|
- name: authors |
|
sequence: |
|
- name: name |
|
dtype: string |
|
- name: affiliation |
|
struct: |
|
- name: laboratory |
|
dtype: string |
|
- name: institution |
|
dtype: string |
|
- name: location |
|
dtype: string |
|
- name: summary |
|
dtype: string |
|
- name: field_of_study |
|
sequence: string |
|
- name: venue |
|
dtype: string |
|
- name: publication_date |
|
dtype: string |
|
- name: n_references |
|
dtype: int32 |
|
- name: n_citations |
|
dtype: int32 |
|
- name: n_influential_citations |
|
dtype: int32 |
|
- name: introduction |
|
dtype: string |
|
- name: background |
|
dtype: string |
|
- name: methodology |
|
dtype: string |
|
- name: experiments_results |
|
dtype: string |
|
- name: conclusion |
|
dtype: string |
|
- name: full_text |
|
dtype: string |
|
- name: decision |
|
dtype: bool |
|
- name: decision_text |
|
dtype: string |
|
- name: reviews |
|
sequence: |
|
- name: review_id |
|
dtype: string |
|
- name: review |
|
struct: |
|
- name: title |
|
dtype: string |
|
- name: paper_summary |
|
dtype: string |
|
- name: main_review |
|
dtype: string |
|
- name: strength_weakness |
|
dtype: string |
|
- name: questions |
|
dtype: string |
|
- name: limitations |
|
dtype: string |
|
- name: review_summary |
|
dtype: string |
|
- name: score |
|
dtype: float32 |
|
- name: confidence |
|
dtype: float32 |
|
- name: novelty |
|
dtype: float32 |
|
- name: correctness |
|
dtype: float32 |
|
- name: clarity |
|
dtype: float32 |
|
- name: impact |
|
dtype: float32 |
|
- name: reproducibility |
|
dtype: float32 |
|
- name: ethics |
|
dtype: string |
|
- name: comments |
|
sequence: |
|
- name: title |
|
dtype: string |
|
- name: comment |
|
dtype: string |
|
- name: references |
|
sequence: |
|
- name: paperhash |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: abstracts |
|
dtype: string |
|
- name: authors |
|
sequence: |
|
- name: name |
|
dtype: string |
|
- name: affiliation |
|
struct: |
|
- name: laboratory |
|
dtype: string |
|
- name: institution |
|
dtype: string |
|
- name: location |
|
dtype: string |
|
- name: arxiv_id |
|
dtype: string |
|
- name: s2_corpus_id |
|
dtype: string |
|
- name: intents |
|
sequence: string |
|
- name: isInfluential |
|
dtype: bool |
|
- name: hypothesis |
|
dtype: string |
|
- name: month_since_publication |
|
dtype: int32 |
|
- name: avg_citations_per_month |
|
dtype: float32 |
|
splits: |
|
- name: train |
|
num_bytes: 3006332 |
|
num_examples: 2060 |
|
- name: validation |
|
num_bytes: 13669135 |
|
num_examples: 9013 |
|
- name: test |
|
num_bytes: 14325483 |
|
num_examples: 9014 |
|
download_size: 14253625 |
|
dataset_size: 31000950 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
Datasets related to the task of Scholarly Document Quality Prediction (SDQP). |
|
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability). |
|
The information that is potentially available for each sample can be found below. |
|
|
|
## ACL-OCL Extended |
|
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main). |
|
Extended with updated citation counts, references and annotated research hypothesis |
|
|
|
## OpenReview |
|
A dataset for review score and citation count prediction, obtained by parsing OpenReview. |
|
Due to licensing the dataset comes in 3 formats: |
|
|
|
1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license. |
|
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers. |
|
3. openreview-full: A script to obtain the full dataset with submissions. |
|
|
|
|
|
|
|
## Citation |
|
|
|
If you use the dataset in your work, please cite: |
|
|
|
|
|
|
|
The data model for the papers: |
|
|
|
### Paper Data Model |
|
```json |
|
{ |
|
# ID's |
|
"paperhash": str, |
|
"arxiv_id": str | None, |
|
"s2_corpus_id": str | None, |
|
|
|
# Basic Info |
|
"title":str, |
|
"authors": list[Author], |
|
"abstract": str | None, |
|
"summary": str | None, |
|
"publication_date": str | None, |
|
|
|
# OpenReview Metadata |
|
"field_of_study": list[str] | str | None, |
|
"venue": str | None, |
|
|
|
# s2 Metadata |
|
"n_references": int | None, |
|
"n_citations": int | None, |
|
"n_influential_citations": int | None, |
|
"open_access": bool | None, |
|
"external_ids": dict | None, |
|
"pdf_url": str | None, |
|
|
|
# Content |
|
"parsed_pdf": dict | None, |
|
"parsed_latex": dict | None, |
|
"structured_content": dict[str, Section], |
|
|
|
# Review Data |
|
"openreview": bool, |
|
"decision": bool | None, |
|
"decision_text": str | None, |
|
"reviews": list[Review] | None, |
|
"comments": list[Comment] | None, |
|
|
|
# References |
|
"references": list[Reference] | None, |
|
"bibref2section": dict, |
|
"bibref2paperhash": dict, |
|
|
|
# Hypothesis |
|
"hypothesis": dict | None |
|
} |
|
``` |
|
|
|
### Author Data Model |
|
```json |
|
{ |
|
"name":str, |
|
"affiliation": { |
|
"laboratory": str | dict | None, |
|
"institution": str | dict | None, |
|
"location": str | dict | None |
|
} |
|
} |
|
``` |
|
|
|
### Reference Data Model |
|
```json |
|
{ |
|
"paperhash": str, |
|
"title": str, |
|
"abstract": str = "", |
|
"authors": list[Author], |
|
|
|
# IDs |
|
"arxiv_id": str | None, |
|
"s2_corpus_id": str | None, |
|
"external_ids": dict| None, |
|
|
|
# Reference specific info |
|
"intents": list[str] | None = None, |
|
"isInfluential": bool | None = None |
|
} |
|
``` |
|
|
|
|
|
### Comment Data Model |
|
```json |
|
{ |
|
"title": str, |
|
"comment": str |
|
} |
|
``` |
|
|
|
|
|
### Section Data Model |
|
```json |
|
{ |
|
"name": str, |
|
"sec_num": str, |
|
"classification": str, |
|
"text": str, |
|
"subsections": list[Section] |
|
} |
|
``` |
|
|
|
### Review Data Model |
|
|
|
```json |
|
{ |
|
"review_id": str, |
|
"review": { |
|
"title": str | None, |
|
"paper_summary": str | None, |
|
"main_review": str | None, |
|
"strength_weakness": str | None, |
|
"questions": str | None, |
|
"limitations": str | None, |
|
"review_summary": str | None |
|
} |
|
"score": float | None, |
|
"confidence": float | None, |
|
"novelty": float | None, |
|
"correctness": float | None, |
|
"clarity": float | None, |
|
"impact": float | None, |
|
"reproducibility": float | None, |
|
"ethics": str | None |
|
} |
|
``` |