File size: 6,543 Bytes
ff2ec40
 
 
 
 
 
 
 
 
 
 
d15c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3602a91
d15c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb1cc7
 
 
 
c4225a1
 
 
 
 
 
 
 
 
 
 
 
 
 
d181e49
 
2ae7d49
d181e49
 
 
 
 
 
 
 
 
 
 
bb12098
642afd0
 
 
 
 
 
 
 
343e9b5
 
 
 
 
 
 
 
a3dd240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f105b
b66a83e
b7f105b
b67f3ac
b7f105b
b67f3ac
b7f105b
b67f3ac
b7f105b
 
 
 
 
 
 
 
 
2ae7d49
b01ab3e
2ae7d49
b01ab3e
2ae7d49
b01ab3e
2ae7d49
ff2ec40
 
 
 
6f86353
ff2ec40
 
 
 
 
35fcc81
ff2ec40
b7f105b
ff2ec40
b7f105b
97af0ce
ff2ec40
b7f105b
97af0ce
16deb7e
 
ff2ec40
7169685
ff2ec40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- SDQP
- scholarly
- citation_count_prediction
- review_score_prediction
dataset_info:
  features:
  - name: paperhash
    dtype: string
  - name: s2_corpus_id
    dtype: string
  - name: arxiv_id
    dtype: string
  - name: title
    dtype: string
  - name: abstract
    dtype: string
  - name: authors
    sequence:
    - name: name
      dtype: string
    - name: affiliation
      struct:
      - name: laboratory
        dtype: string
      - name: institution
        dtype: string
      - name: location
        dtype: string
  - name: summary
    dtype: string
  - name: field_of_study
    sequence: string
  - name: venue
    dtype: string
  - name: publication_date
    dtype: string
  - name: n_references
    dtype: int32
  - name: n_citations
    dtype: int32
  - name: n_influential_citations
    dtype: int32
  - name: introduction
    dtype: string
  - name: background
    dtype: string
  - name: methodology
    dtype: string
  - name: experiments_results
    dtype: string
  - name: conclusion
    dtype: string
  - name: full_text
    dtype: string
  - name: decision
    dtype: bool
  - name: decision_text
    dtype: string
  - name: reviews
    sequence:
    - name: review_id
      dtype: string
    - name: review
      struct:
      - name: title
        dtype: string
      - name: paper_summary
        dtype: string
      - name: main_review
        dtype: string
      - name: strength_weakness
        dtype: string
      - name: questions
        dtype: string
      - name: limitations
        dtype: string
      - name: review_summary
        dtype: string
    - name: score
      dtype: float32
    - name: confidence
      dtype: float32
    - name: novelty
      dtype: float32
    - name: correctness
      dtype: float32
    - name: clarity
      dtype: float32
    - name: impact
      dtype: float32
    - name: reproducibility
      dtype: float32
    - name: ethics
      dtype: string
  - name: comments
    sequence:
    - name: title
      dtype: string
    - name: comment
      dtype: string
  - name: references
    sequence:
    - name: paperhash
      dtype: string
    - name: title
      dtype: string
    - name: abstract
      dtype: string
    - name: authors
      sequence:
      - name: name
        dtype: string
      - name: affiliation
        struct:
        - name: laboratory
          dtype: string
        - name: institution
          dtype: string
        - name: location
          dtype: string
    - name: arxiv_id
      dtype: string
    - name: s2_corpus_id
      dtype: string
    - name: intents
      sequence: string
    - name: isInfluential
      dtype: bool
  - name: hypothesis
    dtype: string
  - name: month_since_publication
    dtype: int32
  - name: avg_citations_per_month
    dtype: float32
  - name: mean_score
    dtype: float32
  - name: mean_confidence
    dtype: float32
  - name: mean_novelty
    dtype: float32
  - name: mean_correctness
    dtype: float32
  - name: mean_clarity
    dtype: float32
  - name: mean_impact
    dtype: float32
  - name: mean_reproducibility
    dtype: float32
  - name: openreview_submission_id
    dtype: string
  splits:
  - name: acl_ocl_train
    num_bytes: 2553475339
    num_examples: 42060
  - name: acl_ocl_validation
    num_bytes: 805703352
    num_examples: 9013
  - name: acl_ocl_test
    num_bytes: 806719943
    num_examples: 9014
  download_size: 2084737209
  dataset_size: 4165898634
configs:
- config_name: acl_ocl
  data_files:
  - split: train
    path: data/acl_ocl_train-*
  - split: validation
    path: data/acl_ocl_validation-*
  - split: test
    path: data/acl_ocl_test-*
- config_name: openreview-full
  data_files:
  - split: train
    path: data/openreview_full_training-*
  - split: validation
    path: data/openreview_full_validation-*
  - split: test
    path: data/openreview_full_test-*
- config_name: openreview-iclr
  data_files:
  - split: train
    path: data/iclr_training-*
  - split: validation
    path: data/iclr_validation-*
  - split: test
    path: data/iclr_test
- config_name: default
  data_files:
  - split: train
    path: data/iclr_training-*
  - split: validation
    path: data/iclr_validation-*
  - split: test
    path: data/iclr_test-*
- config_name: openreview-iclr
  data_files:
  - split: train
    path: data/iclr_training-*
  - split: validation
    path: data/iclr_validation-*
  - split: test
    path: data/iclr_test-*
- config_name: openreview-neurips
  data_files:
  - split: train
    path: data/neurips_training-*
  - split: validation
    path: data/neurips_validation-*
  - split: test
    path: data/neurips_test-*
- config_name: openreview-public
  data_files:
  - split: train
    path: data/openreview_public_train-*
  - split: validation
    path: data/openreview_public_validation-*
  - split: test
    path: data/openreview_public_test-*
---

Datasets related to the task of Scholarly Document Quality Prediction (SDQP). 
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
 

## ACL-OCL Extended
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
Extended with updated citation counts, references and annotated research hypothesis

## OpenReview (Last Update: 1.1.2025)
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
Due to licensing the dataset comes in different formats:

### Datasets without parsed pdfs of submissions (i.e. the fields introduction, background, methodology, experiments_results, conclusion, full_text are available)
1. **openreview-public**: Contains full information on all OpenReview submissions that are accompanied with a CC BY 4.0 license.

### Datasets without parsed pdfs of submissions (i.e. the fields introduction, background, methodology, experiments_results, conclusion, full_text are None)
1. **openreview-full**: Contains all OpenReview submissions, splits generated based on publications dates.  
2. **openreview-iclr**: All ICLR submissions from the years 2018-2023 (training) and 2024 (validation and training).
3. **openreview-neurips**: All NeurIPS submissions from the years 2021-2023 (training) and 2024 (validation and training).

All datasets without parsed pdfs of submissions can be completed by running code available [here](https://github.com/NikeHop/automatic_scientific_quality_metrics)