Datasets:
File size: 6,486 Bytes
ff2ec40 d15c8cd 3602a91 d15c8cd 6cb1cc7 d15c8cd 3602a91 4bc3fb8 30f739e 3602a91 4bc3fb8 30f739e 3602a91 4bc3fb8 3602a91 bb12098 30f739e ff2ec40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- SDQP
- scholarly
- citation_count_prediction
- review_score_prediction
dataset_info:
features:
- name: paperhash
dtype: string
- name: s2_corpus_id
dtype: string
- name: arxiv_id
dtype: string
- name: title
dtype: string
- name: abstract
dtype: string
- name: authors
sequence:
- name: name
dtype: string
- name: affiliation
struct:
- name: laboratory
dtype: string
- name: institution
dtype: string
- name: location
dtype: string
- name: summary
dtype: string
- name: field_of_study
sequence: string
- name: venue
dtype: string
- name: publication_date
dtype: string
- name: n_references
dtype: int32
- name: n_citations
dtype: int32
- name: n_influential_citations
dtype: int32
- name: introduction
dtype: string
- name: background
dtype: string
- name: methodology
dtype: string
- name: experiments_results
dtype: string
- name: conclusion
dtype: string
- name: full_text
dtype: string
- name: decision
dtype: bool
- name: decision_text
dtype: string
- name: reviews
sequence:
- name: review_id
dtype: string
- name: review
struct:
- name: title
dtype: string
- name: paper_summary
dtype: string
- name: main_review
dtype: string
- name: strength_weakness
dtype: string
- name: questions
dtype: string
- name: limitations
dtype: string
- name: review_summary
dtype: string
- name: score
dtype: float32
- name: confidence
dtype: float32
- name: novelty
dtype: float32
- name: correctness
dtype: float32
- name: clarity
dtype: float32
- name: impact
dtype: float32
- name: reproducibility
dtype: float32
- name: ethics
dtype: string
- name: comments
sequence:
- name: title
dtype: string
- name: comment
dtype: string
- name: references
sequence:
- name: paperhash
dtype: string
- name: title
dtype: string
- name: abstract
dtype: string
- name: authors
sequence:
- name: name
dtype: string
- name: affiliation
struct:
- name: laboratory
dtype: string
- name: institution
dtype: string
- name: location
dtype: string
- name: arxiv_id
dtype: string
- name: s2_corpus_id
dtype: string
- name: intents
sequence: string
- name: isInfluential
dtype: bool
- name: hypothesis
dtype: string
- name: month_since_publication
dtype: int32
- name: avg_citations_per_month
dtype: float32
splits:
- name: train
num_bytes: 160996851
num_examples: 2060
- name: validation
num_bytes: 758528471
num_examples: 9013
- name: test
num_bytes: 853299931
num_examples: 9014
download_size: 872309865
dataset_size: 1772825253
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
Datasets related to the task of Scholarly Document Quality Prediction (SDQP).
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
The information that is potentially available for each sample can be found below.
## ACL-OCL Extended
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
Extended with updated citation counts, references and annotated research hypothesis
## OpenReview
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
Due to licensing the dataset comes in 3 formats:
1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license.
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers.
3. openreview-full: A script to obtain the full dataset with submissions.
## Citation
If you use the dataset in your work, please cite:
The data model for the papers:
### Paper Data Model
```json
{
# ID's
"paperhash": str,
"arxiv_id": str | None,
"s2_corpus_id": str | None,
# Basic Info
"title":str,
"authors": list[Author],
"abstract": str | None,
"summary": str | None,
"publication_date": str | None,
# OpenReview Metadata
"field_of_study": list[str] | str | None,
"venue": str | None,
# s2 Metadata
"n_references": int | None,
"n_citations": int | None,
"n_influential_citations": int | None,
"open_access": bool | None,
"external_ids": dict | None,
"pdf_url": str | None,
# Content
"parsed_pdf": dict | None,
"parsed_latex": dict | None,
"structured_content": dict[str, Section],
# Review Data
"openreview": bool,
"decision": bool | None,
"decision_text": str | None,
"reviews": list[Review] | None,
"comments": list[Comment] | None,
# References
"references": list[Reference] | None,
"bibref2section": dict,
"bibref2paperhash": dict,
# Hypothesis
"hypothesis": dict | None
}
```
### Author Data Model
```json
{
"name":str,
"affiliation": {
"laboratory": str | dict | None,
"institution": str | dict | None,
"location": str | dict | None
}
}
```
### Reference Data Model
```json
{
"paperhash": str,
"title": str,
"abstract": str = "",
"authors": list[Author],
# IDs
"arxiv_id": str | None,
"s2_corpus_id": str | None,
"external_ids": dict| None,
# Reference specific info
"intents": list[str] | None = None,
"isInfluential": bool | None = None
}
```
### Comment Data Model
```json
{
"title": str,
"comment": str
}
```
### Section Data Model
```json
{
"name": str,
"sec_num": str,
"classification": str,
"text": str,
"subsections": list[Section]
}
```
### Review Data Model
```json
{
"review_id": str,
"review": {
"title": str | None,
"paper_summary": str | None,
"main_review": str | None,
"strength_weakness": str | None,
"questions": str | None,
"limitations": str | None,
"review_summary": str | None
}
"score": float | None,
"confidence": float | None,
"novelty": float | None,
"correctness": float | None,
"clarity": float | None,
"impact": float | None,
"reproducibility": float | None,
"ethics": str | None
}
``` |