File size: 6,486 Bytes
ff2ec40
 
 
 
 
 
 
 
 
 
 
d15c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3602a91
d15c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb1cc7
 
 
 
d15c8cd
 
3602a91
4bc3fb8
30f739e
3602a91
4bc3fb8
30f739e
3602a91
4bc3fb8
3602a91
 
bb12098
 
 
 
 
30f739e
 
 
 
ff2ec40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- SDQP
- scholarly
- citation_count_prediction
- review_score_prediction
dataset_info:
  features:
  - name: paperhash
    dtype: string
  - name: s2_corpus_id
    dtype: string
  - name: arxiv_id
    dtype: string
  - name: title
    dtype: string
  - name: abstract
    dtype: string
  - name: authors
    sequence:
    - name: name
      dtype: string
    - name: affiliation
      struct:
      - name: laboratory
        dtype: string
      - name: institution
        dtype: string
      - name: location
        dtype: string
  - name: summary
    dtype: string
  - name: field_of_study
    sequence: string
  - name: venue
    dtype: string
  - name: publication_date
    dtype: string
  - name: n_references
    dtype: int32
  - name: n_citations
    dtype: int32
  - name: n_influential_citations
    dtype: int32
  - name: introduction
    dtype: string
  - name: background
    dtype: string
  - name: methodology
    dtype: string
  - name: experiments_results
    dtype: string
  - name: conclusion
    dtype: string
  - name: full_text
    dtype: string
  - name: decision
    dtype: bool
  - name: decision_text
    dtype: string
  - name: reviews
    sequence:
    - name: review_id
      dtype: string
    - name: review
      struct:
      - name: title
        dtype: string
      - name: paper_summary
        dtype: string
      - name: main_review
        dtype: string
      - name: strength_weakness
        dtype: string
      - name: questions
        dtype: string
      - name: limitations
        dtype: string
      - name: review_summary
        dtype: string
    - name: score
      dtype: float32
    - name: confidence
      dtype: float32
    - name: novelty
      dtype: float32
    - name: correctness
      dtype: float32
    - name: clarity
      dtype: float32
    - name: impact
      dtype: float32
    - name: reproducibility
      dtype: float32
    - name: ethics
      dtype: string
  - name: comments
    sequence:
    - name: title
      dtype: string
    - name: comment
      dtype: string
  - name: references
    sequence:
    - name: paperhash
      dtype: string
    - name: title
      dtype: string
    - name: abstract
      dtype: string
    - name: authors
      sequence:
      - name: name
        dtype: string
      - name: affiliation
        struct:
        - name: laboratory
          dtype: string
        - name: institution
          dtype: string
        - name: location
          dtype: string
    - name: arxiv_id
      dtype: string
    - name: s2_corpus_id
      dtype: string
    - name: intents
      sequence: string
    - name: isInfluential
      dtype: bool
  - name: hypothesis
    dtype: string
  - name: month_since_publication
    dtype: int32
  - name: avg_citations_per_month
    dtype: float32
  splits:
  - name: train
    num_bytes: 160996851
    num_examples: 2060
  - name: validation
    num_bytes: 758528471
    num_examples: 9013
  - name: test
    num_bytes: 853299931
    num_examples: 9014
  download_size: 872309865
  dataset_size: 1772825253
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

Datasets related to the task of Scholarly Document Quality Prediction (SDQP). 
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
The information that is potentially available for each sample can be found below.  

## ACL-OCL Extended
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
Extended with updated citation counts, references and annotated research hypothesis

## OpenReview 
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
Due to licensing the dataset comes in 3 formats:

1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license. 
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers.
3. openreview-full: A script to obtain the full dataset with submissions.



## Citation

If you use the dataset in your work, please cite:



The data model for the papers:

### Paper Data Model
```json
{
# ID's
"paperhash": str,
"arxiv_id": str | None,
"s2_corpus_id": str | None,

# Basic Info
"title":str,
"authors": list[Author],
"abstract": str | None,
"summary": str | None,
"publication_date": str | None,

# OpenReview Metadata
"field_of_study": list[str] | str | None,
"venue": str | None,

# s2 Metadata
"n_references": int | None,
"n_citations": int | None,
"n_influential_citations": int | None,
"open_access": bool | None,
"external_ids": dict | None,
"pdf_url": str | None,

# Content
"parsed_pdf": dict | None,
"parsed_latex": dict | None,
"structured_content": dict[str, Section],

# Review Data
"openreview": bool,
"decision": bool | None,
"decision_text": str | None,
"reviews": list[Review] | None,
"comments": list[Comment] | None,

# References
"references": list[Reference] | None,
"bibref2section": dict,
"bibref2paperhash": dict,

# Hypothesis
"hypothesis": dict | None
}
```

### Author Data Model
```json
{
"name":str,
"affiliation": {
  "laboratory": str | dict | None,
  "institution": str | dict | None, 
  "location": str | dict | None
  }
}
```

### Reference Data Model 
```json
{
"paperhash": str,
"title": str,
"abstract": str = "",
"authors": list[Author],

# IDs
"arxiv_id": str | None,
"s2_corpus_id": str | None,
"external_ids": dict| None,

# Reference specific info
"intents": list[str] | None = None,
"isInfluential": bool | None = None
}
```


### Comment Data Model 
```json
{
"title": str,
"comment": str
}
```


### Section Data Model 
```json
{
"name": str,
"sec_num": str,
"classification": str,
"text": str,
"subsections": list[Section]
}
```

### Review Data Model

```json
{
"review_id": str,
"review": {
  "title": str | None,
  "paper_summary": str | None,
  "main_review": str | None,
  "strength_weakness": str | None,
  "questions": str | None,
  "limitations": str | None,
  "review_summary": str | None
}
"score": float | None,
"confidence": float | None,
"novelty": float | None,
"correctness": float | None,
"clarity": float | None,
"impact": float | None,
"reproducibility": float | None,
"ethics": str | None
}
```