Datasets:
File size: 8,567 Bytes
ff2ec40 d15c8cd b66a83e d15c8cd 3602a91 d15c8cd 6cb1cc7 c4225a1 2ae7d49 2c595ad bb12098 642afd0 343e9b5 2c595ad 343e9b5 b7f105b b66a83e b7f105b b67f3ac b7f105b b67f3ac b7f105b b67f3ac b7f105b 2ae7d49 b01ab3e 2ae7d49 b01ab3e 2ae7d49 b01ab3e 2ae7d49 ff2ec40 b7f105b ff2ec40 b7f105b 97af0ce ff2ec40 b7f105b 97af0ce ff2ec40 b7f105b ff2ec40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- SDQP
- scholarly
- citation_count_prediction
- review_score_prediction
dataset_info:
features:
- name: paperhash
dtype: string
- name: s2_corpus_id
dtype: string
- name: arxiv_id
dtype: string
- name: title
dtype: string
- name: abstract
dtype: string
- name: authors
sequence:
- name: name
dtype: string
- name: affiliation
struct:
- name: laboratory
dtype: string
- name: institution
dtype: string
- name: location
dtype: string
- name: summary
dtype: string
- name: field_of_study
sequence: string
- name: venue
dtype: string
- name: publication_date
dtype: string
- name: openreview_submission_id
dtype: string
- name: n_references
dtype: int32
- name: n_citations
dtype: int32
- name: n_influential_citations
dtype: int32
- name: introduction
dtype: string
- name: background
dtype: string
- name: methodology
dtype: string
- name: experiments_results
dtype: string
- name: conclusion
dtype: string
- name: full_text
dtype: string
- name: decision
dtype: bool
- name: decision_text
dtype: string
- name: reviews
sequence:
- name: review_id
dtype: string
- name: review
struct:
- name: title
dtype: string
- name: paper_summary
dtype: string
- name: main_review
dtype: string
- name: strength_weakness
dtype: string
- name: questions
dtype: string
- name: limitations
dtype: string
- name: review_summary
dtype: string
- name: score
dtype: float32
- name: confidence
dtype: float32
- name: novelty
dtype: float32
- name: correctness
dtype: float32
- name: clarity
dtype: float32
- name: impact
dtype: float32
- name: reproducibility
dtype: float32
- name: ethics
dtype: string
- name: comments
sequence:
- name: title
dtype: string
- name: comment
dtype: string
- name: references
sequence:
- name: paperhash
dtype: string
- name: title
dtype: string
- name: abstract
dtype: string
- name: authors
sequence:
- name: name
dtype: string
- name: affiliation
struct:
- name: laboratory
dtype: string
- name: institution
dtype: string
- name: location
dtype: string
- name: arxiv_id
dtype: string
- name: s2_corpus_id
dtype: string
- name: intents
sequence: string
- name: isInfluential
dtype: bool
- name: hypothesis
dtype: string
- name: month_since_publication
dtype: int32
- name: avg_citations_per_month
dtype: float32
- name: mean_score
dtype: float32
- name: mean_confidence
dtype: float32
- name: mean_novelty
dtype: float32
- name: mean_correctness
dtype: float32
- name: mean_clarity
dtype: float32
- name: mean_impact
dtype: float32
- name: mean_reproducibility
dtype: float32
splits:
- name: openreview_full_training
num_bytes: 406640201
num_examples: 5197
- name: openreview_full_validation
num_bytes: 406547240
num_examples: 5195
- name: openreview_full_test
num_bytes: 406640201
num_examples: 5197
download_size: 590644058
dataset_size: 1219827642
configs:
- config_name: acl_ocl
data_files:
- split: train
path: data/acl_ocl_train-*
- split: validation
path: data/acl_ocl_validation-*
- split: test
path: data/acl_ocl_test-*
- config_name: default
data_files:
- split: openreview_full_training
path: data/openreview_full_training-*
- split: openreview_full_validation
path: data/openreview_full_validation-*
- split: openreview_full_test
path: data/openreview_full_test-*
- config_name: openreview-full
data_files:
- split: train
path: data/openreview_full_training-*
- split: validation
path: data/openreview_full_validation-*
- split: test
path: data/openreview_full_test-*
- config_name: openreview-iclr
data_files:
- split: train
path: data/iclr_training-*
- split: validation
path: data/iclr_validation-*
- split: test
path: data/iclr_test-*
- config_name: openreview-neurips
data_files:
- split: train
path: data/neurips_training-*
- split: validation
path: data/neurips_validation-*
- split: test
path: data/neurips_test-*
- config_name: openreview-public
data_files:
- split: train
path: data/openreview_public_train-*
- split: validation
path: data/openreview_public_validation-*
- split: test
path: data/openreview_public_test-*
---
Datasets related to the task of Scholarly Document Quality Prediction (SDQP).
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
The information that is potentially available for each sample can be found below.
## ACL-OCL Extended
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
Extended with updated citation counts, references and annotated research hypothesis
## OpenReview
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
Due to licensing the dataset comes in different formats:
### Datasets without parsed pdfs of submissions (i.e. the fields introduction, background, methodology, experiments_results, conclusion, full_text are available)
1. **openreview-public**: Contains full information on all OpenReview submissions that are accompanied with a CC BY 4.0 license.
### Datasets without parsed pdfs of submissions (i.e. the fields introduction, background, methodology, experiments_results, conclusion, full_text are None)
1. **openreview-full**: Contains all OpenReview submissions, splits generated based on publications dates.
2. **openreview-iclr**: All ICLR submissions from the years 2018-2023 (training) into 2024 (validation and training).
3. **openreview-neurips**: All NeurIPS submissions from the years 2021-2023 (training) into 2024 (validation and training).
## Citation
If you use the dataset in your work, please cite:
CC BY 4.0
The data model for the papers:
### Paper Data Model
```json
{
# ID's
"paperhash": str,
"arxiv_id": str | None,
"s2_corpus_id": str | None,
# Basic Info
"title":str,
"authors": list[Author],
"abstract": str | None,
"summary": str | None,
"publication_date": str | None,
# OpenReview Metadata
"field_of_study": list[str] | str | None,
"venue": str | None,
# s2 Metadata
"n_references": int | None,
"n_citations": int | None,
"n_influential_citations": int | None,
"open_access": bool | None,
"external_ids": dict | None,
"pdf_url": str | None,
# Content
"parsed_pdf": dict | None,
"parsed_latex": dict | None,
"structured_content": dict[str, Section],
# Review Data
"openreview": bool,
"decision": bool | None,
"decision_text": str | None,
"reviews": list[Review] | None,
"comments": list[Comment] | None,
# References
"references": list[Reference] | None,
"bibref2section": dict,
"bibref2paperhash": dict,
# Hypothesis
"hypothesis": dict | None
}
```
### Author Data Model
```json
{
"name":str,
"affiliation": {
"laboratory": str | dict | None,
"institution": str | dict | None,
"location": str | dict | None
}
}
```
### Reference Data Model
```json
{
"paperhash": str,
"title": str,
"abstract": str = "",
"authors": list[Author],
# IDs
"arxiv_id": str | None,
"s2_corpus_id": str | None,
"external_ids": dict| None,
# Reference specific info
"intents": list[str] | None = None,
"isInfluential": bool | None = None
}
```
### Comment Data Model
```json
{
"title": str,
"comment": str
}
```
### Section Data Model
```json
{
"name": str,
"sec_num": str,
"classification": str,
"text": str,
"subsections": list[Section]
}
```
### Review Data Model
```json
{
"review_id": str,
"review": {
"title": str | None,
"paper_summary": str | None,
"main_review": str | None,
"strength_weakness": str | None,
"questions": str | None,
"limitations": str | None,
"review_summary": str | None
}
"score": float | None,
"confidence": float | None,
"novelty": float | None,
"correctness": float | None,
"clarity": float | None,
"impact": float | None,
"reproducibility": float | None,
"ethics": str | None
}
``` |