Datasets:
mteb
/

Modalities:
Tabular
Text
Formats:
json
Libraries:
Datasets
Dask
tstamp
float64
1.72B
1.74B
task_type
stringclasses
1 value
type
stringclasses
4 values
models
sequencelengths
2
2
ip
stringclasses
1 value
0_conv_id
stringlengths
32
32
0_model_name
stringclasses
14 values
0_prompt
sequencelengths
3
100
0_ncluster
int64
1
13
0_output
stringclasses
1 value
0_ndim
stringclasses
2 values
0_dim_method
stringclasses
2 values
0_clustering_method
stringclasses
1 value
1_conv_id
stringlengths
32
32
1_model_name
stringclasses
14 values
1_prompt
sequencelengths
3
100
1_ncluster
int64
1
13
1_output
stringclasses
1 value
1_ndim
stringclasses
2 values
1_dim_method
stringclasses
2 values
1_clustering_method
stringclasses
1 value
1,735,881,028.3917
clustering
rightvote
[ "", "" ]
5fd17f97ea254227ba80c20f8aece83a
text-embedding-004
[ "Purkinje", "pyramidal", "motor", "sensory", "green", "purple", "yellow", "red", "blue", "pink", "orange", "AWS", "IBM Cloud", "DigitalOcean", "willow", "maple", "oak" ]
4
3D (press for 2D)
PCA
KMeans
e6d47ea35c6e42c38873a1d3636e1cb9
jinaai/jina-embeddings-v2-base-en
[ "Purkinje", "pyramidal", "motor", "sensory", "green", "purple", "yellow", "red", "blue", "pink", "orange", "AWS", "IBM Cloud", "DigitalOcean", "willow", "maple", "oak" ]
4
3D (press for 2D)
PCA
KMeans
1,735,881,103.9453
clustering
leftvote
[ "", "" ]
c5aaa9763b114424a24a773359d56059
intfloat/e5-mistral-7b-instruct
[ "square", "pentagon", "octagon", "jiu-jitsu", "kung fu", "taekwondo", "muay thai", "judo", "karate", "Mandarin", "French", "Arabic", "Spanish", "Monopoly", "chess", "Catan", "Risk" ]
4
3D (press for 2D)
PCA
KMeans
c07e7240bf874cecaeabfe5a9fa595ff
text-embedding-3-large
[ "square", "pentagon", "octagon", "jiu-jitsu", "kung fu", "taekwondo", "muay thai", "judo", "karate", "Mandarin", "French", "Arabic", "Spanish", "Monopoly", "chess", "Catan", "Risk" ]
4
3D (press for 2D)
PCA
KMeans
1,735,933,264.0071
clustering
rightvote
[ "", "" ]
e6f275ee59894d8e8c04a86b55189ef3
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "convex", "plane", "parabolic", "elephant", "lion", "giraffe", "tiger", "penguin", "carnation", "daisy", "sunflower", "tulip", "orchid", "rose", "BMW", "Nissan", "GMC" ]
4
3D (press for 2D)
PCA
KMeans
12662795cc794d41bf588f198780f8d8
embed-english-v3.0
[ "convex", "plane", "parabolic", "elephant", "lion", "giraffe", "tiger", "penguin", "carnation", "daisy", "sunflower", "tulip", "orchid", "rose", "BMW", "Nissan", "GMC" ]
4
3D (press for 2D)
PCA
KMeans
1,722,263,906.0355
clustering
tievote
[ "", "" ]
53aecd7e5dc24a6cab610e361d69ec88
voyage-multilingual-2
[ "Pikachu", "Darth Vader", "Yoda", "Slugma", "Gandalf", "Legolas" ]
3
3D (press for 2D)
PCA
KMeans
b2a92da0d4b64569af45351deee84e7f
BAAI/bge-large-en-v1.5
[ "Pikachu", "Darth Vader", "Yoda", "Slugma", "Gandalf", "Legolas" ]
3
3D (press for 2D)
PCA
KMeans
1,723,773,356.776
clustering
rightvote
[ "", "" ]
bb85ed0b1a2346ee98c183269ce62cbb
text-embedding-3-large
[ "the major city in US", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
2
3D (press for 2D)
PCA
KMeans
50788a7548b34a43ba518321a7c900a7
nomic-ai/nomic-embed-text-v1.5
[ "the major city in US", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
2
3D (press for 2D)
PCA
KMeans
1,723,773,582.4108
clustering
leftvote
[ "", "" ]
fc182aada5a1495fac383e3650a06fa7
mixedbread-ai/mxbai-embed-large-v1
[ "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
3D (press for 2D)
PCA
KMeans
353d690256994441a1b2e7f8c1777b52
BAAI/bge-large-en-v1.5
[ "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
3D (press for 2D)
PCA
KMeans
1,723,791,451.7309
clustering
rightvote
[ "", "" ]
eeb16bc223734184aff49ba1cd073ab1
sentence-transformers/all-MiniLM-L6-v2
[ "PVC", "acrylic", "polypropylene", "polyethylene", "pruning shears", "wheelbarrow", "rake", "hoe", "trowel", "watering can", "Google Cloud", "IBM Cloud", "Azure", "DigitalOcean", "AWS", "penne", "ravioli", "anchoring bias", "hindsight bias", "confirmation bias", "dunning-kruger effect" ]
5
3D (press for 2D)
PCA
KMeans
3f1a9b58bfff4fb38c727bdacaa7a7f9
BAAI/bge-large-en-v1.5
[ "PVC", "acrylic", "polypropylene", "polyethylene", "pruning shears", "wheelbarrow", "rake", "hoe", "trowel", "watering can", "Google Cloud", "IBM Cloud", "Azure", "DigitalOcean", "AWS", "penne", "ravioli", "anchoring bias", "hindsight bias", "confirmation bias", "dunning-kruger effect" ]
5
3D (press for 2D)
PCA
KMeans
1,722,281,965.6179
clustering
tievote
[ "", "" ]
5accf948c7ac40c89eeb322a4e13bf62
intfloat/e5-mistral-7b-instruct
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
44a299f8e8f74b61a7800197c1b479ab
intfloat/multilingual-e5-large-instruct
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,722,282,005.3598
clustering
tievote
[ "", "" ]
f8293714822c4dd3a8248660500f9035
intfloat/e5-mistral-7b-instruct
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
336180d1bf524d83a68ce1cc38470459
voyage-multilingual-2
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,722,282,151.7917
clustering
leftvote
[ "", "" ]
2a1a8ba50b6d4bc0b2ba7c0abd8dba81
intfloat/e5-mistral-7b-instruct
[ "Transits – Neptune conjunct the Moon | LUA ASTROLOGY", "Get Ex Love Back - Swami Rishinand", "Does the Civic Si have any competition?", "MARIN MARAIS (1656-1728) - Tombeau pour Mr. de Lully", "What instrument should I learn?", "David Lang - Justs (After the Song of Songs)", "Tips to live desire life with astrology | India" ]
3
3D (press for 2D)
PCA
KMeans
1636fa4a9c774083b13a62e6f18461cc
voyage-multilingual-2
[ "Transits – Neptune conjunct the Moon | LUA ASTROLOGY", "Get Ex Love Back - Swami Rishinand", "Does the Civic Si have any competition?", "MARIN MARAIS (1656-1728) - Tombeau pour Mr. de Lully", "What instrument should I learn?", "David Lang - Justs (After the Song of Songs)", "Tips to live desire life with astrology | India" ]
3
3D (press for 2D)
PCA
KMeans
1,722,281,821.2839
clustering
rightvote
[ "", "" ]
d20f08ce773f4046a5db3a1242607917
mixedbread-ai/mxbai-embed-large-v1
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
5a39b6d2ca964e049316b552f24f013d
voyage-multilingual-2
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,722,615,202.3598
clustering
leftvote
[ "", "" ]
687d9008c4e74bd99523eaad66d98dd1
Salesforce/SFR-Embedding-2_R
[ "historical fiction", "horror", "fantasy", "mystery", "fear", "sadness", "tulip", "lily", "orchid", "daisy", "rose", "sunflower", "sapphire", "emerald", "opal", "ruby", "diamond" ]
4
3D (press for 2D)
PCA
KMeans
808ec06d5fdd4e0dac8ca639e758e2de
sentence-transformers/all-MiniLM-L6-v2
[ "historical fiction", "horror", "fantasy", "mystery", "fear", "sadness", "tulip", "lily", "orchid", "daisy", "rose", "sunflower", "sapphire", "emerald", "opal", "ruby", "diamond" ]
4
3D (press for 2D)
PCA
KMeans
1,722,615,253.2679
clustering
rightvote
[ "", "" ]
c867408bf4e849d2b03c0b7fda95f765
embed-english-v3.0
[ "summer", "spring", "fall", "winter", "Safari", "Firefox", "Opera", "Brave", "cirrus", "altostratus", "kiwi", "peach", "banana", "orange", "apple", "brioche", "rye", "sourdough", "pumpernickel", "focaccia", "ciabatta", "baguette" ]
5
3D (press for 2D)
PCA
KMeans
862137c66ef74f9995b59116deab7628
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "summer", "spring", "fall", "winter", "Safari", "Firefox", "Opera", "Brave", "cirrus", "altostratus", "kiwi", "peach", "banana", "orange", "apple", "brioche", "rye", "sourdough", "pumpernickel", "focaccia", "ciabatta", "baguette" ]
5
3D (press for 2D)
PCA
KMeans
1,722,615,451.8371
clustering
leftvote
[ "", "" ]
f6d62dfa5d50447fb621777510c20fb8
GritLM/GritLM-7B
[ "onomatopoeia", "metaphor", "simile", "alliteration", "Apple", "LG", "Huawei", "Xiaomi", "OnePlus", "B", "O", "D", "E", "B12", "K", "C" ]
4
3D (press for 2D)
PCA
KMeans
09cbb0e5b96b4a0d88b03a6e08442aca
intfloat/multilingual-e5-large-instruct
[ "onomatopoeia", "metaphor", "simile", "alliteration", "Apple", "LG", "Huawei", "Xiaomi", "OnePlus", "B", "O", "D", "E", "B12", "K", "C" ]
4
3D (press for 2D)
PCA
KMeans
1,722,615,480.5966
clustering
leftvote
[ "", "" ]
8585aad143e645cfa703982e110dfd13
intfloat/e5-mistral-7b-instruct
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1725b26612394f77b5699cf1daae9159
mixedbread-ai/mxbai-embed-large-v1
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,722,628,273.8485
clustering
rightvote
[ "", "" ]
de12e68037454e3b952db869c63fc470
text-embedding-004
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
4750f9b4bb8e402cbca8a64e2b5a0fe7
jinaai/jina-embeddings-v2-base-en
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,722,645,867.6444
clustering
rightvote
[ "", "" ]
3a6b26c85989429b81812196dea006e1
text-embedding-004
[ "fedora", "bowler", "cowboy hat", "baseball cap", "beanie", "free verse", "limerick" ]
2
3D (press for 2D)
PCA
KMeans
5564e0cf865d4e3fa0c639be0a168629
voyage-multilingual-2
[ "fedora", "bowler", "cowboy hat", "baseball cap", "beanie", "free verse", "limerick" ]
2
3D (press for 2D)
PCA
KMeans
1,722,645,945.4401
clustering
tievote
[ "", "" ]
5cbc0021ebc94d37806889b1d870c4ba
intfloat/multilingual-e5-large-instruct
[ "trombone", "bassoon", "trumpet", "clarinet", "flute", "jiu-jitsu", "karate", "muay thai", "kung fu", "judo" ]
2
3D (press for 2D)
PCA
KMeans
2296b102d3504214957dbecf466da6b3
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "trombone", "bassoon", "trumpet", "clarinet", "flute", "jiu-jitsu", "karate", "muay thai", "kung fu", "judo" ]
2
3D (press for 2D)
PCA
KMeans
1,722,654,831.3119
clustering
rightvote
[ "", "" ]
708abd5d2da849ae8df5483674bf7bdb
voyage-multilingual-2
[ "Pyramids of Giza", "Hanging Gardens of Babylon", "North America", "Antarctica", "Asia", "South America", "pancreas", "lungs", "kidneys", "stomach", "brain", "epic", "haiku", "ballad", "ode", "free verse" ]
4
3D (press for 2D)
PCA
KMeans
d4eb6cdae94949c7970dea9cd1f7a4d1
Salesforce/SFR-Embedding-2_R
[ "Pyramids of Giza", "Hanging Gardens of Babylon", "North America", "Antarctica", "Asia", "South America", "pancreas", "lungs", "kidneys", "stomach", "brain", "epic", "haiku", "ballad", "ode", "free verse" ]
4
3D (press for 2D)
PCA
KMeans
1,722,717,837.4978
clustering
leftvote
[ "", "" ]
9c01a8e7741548d7a77fd22c47e6b4c4
text-embedding-3-large
[ "beer", "wine", "tequila", "vodka", "rum", "gin", "whiskey", "Google Cloud", "IBM Cloud", "Oracle Cloud", "AWS", "Azure", "OnePlus", "Xiaomi", "Huawei", "Apple", "LG", "Google" ]
3
3D (press for 2D)
PCA
KMeans
8f2c26a27bb54af790a67e3bbed48277
mixedbread-ai/mxbai-embed-large-v1
[ "beer", "wine", "tequila", "vodka", "rum", "gin", "whiskey", "Google Cloud", "IBM Cloud", "Oracle Cloud", "AWS", "Azure", "OnePlus", "Xiaomi", "Huawei", "Apple", "LG", "Google" ]
3
3D (press for 2D)
PCA
KMeans
1,722,776,811.3514
clustering
rightvote
[ "", "" ]
09949aaf3024401d9de5f833aad69062
mixedbread-ai/mxbai-embed-large-v1
[ "fall", "winter", "irony", "onomatopoeia", "personification", "simile", "hyperbole", "alliteration", "metaphor", "compass", "tent", "flashlight", "backpack", "water filter", "Aries", "Cancer", "Virgo", "Scorpio", "Libra" ]
4
3D (press for 2D)
PCA
KMeans
b153421bcf6e4c2ca7829e5ebb31d2d3
intfloat/e5-mistral-7b-instruct
[ "fall", "winter", "irony", "onomatopoeia", "personification", "simile", "hyperbole", "alliteration", "metaphor", "compass", "tent", "flashlight", "backpack", "water filter", "Aries", "Cancer", "Virgo", "Scorpio", "Libra" ]
4
3D (press for 2D)
PCA
KMeans
1,722,796,527.251
clustering
leftvote
[ "", "" ]
c21ad41e3eac4346b64600c67c1f9d61
intfloat/e5-mistral-7b-instruct
[ "Mesopotamian", "Mayan", "Incan", "Egyptian", "K", "C", "E", "D", "B12", "topaz", "sapphire", "diamond", "rye", "pumpernickel", "ciabatta", "baguette", "sourdough", "horror", "historical fiction", "romance", "science fiction" ]
5
3D (press for 2D)
PCA
KMeans
8b1ff376b4c54750aaf7aa9f96600861
BAAI/bge-large-en-v1.5
[ "Mesopotamian", "Mayan", "Incan", "Egyptian", "K", "C", "E", "D", "B12", "topaz", "sapphire", "diamond", "rye", "pumpernickel", "ciabatta", "baguette", "sourdough", "horror", "historical fiction", "romance", "science fiction" ]
5
3D (press for 2D)
PCA
KMeans
1,722,796,588.6399
clustering
tievote
[ "", "" ]
1d97d5dfe41f49889e482d56861261c9
GritLM/GritLM-7B
[ "conscientiousness", "openness", "agreeableness", "wheelbarrow", "rake", "mystery", "fantasy", "hurricane", "tornado" ]
4
3D (press for 2D)
PCA
KMeans
10845938a4c843dd988d5ddc2be85725
intfloat/e5-mistral-7b-instruct
[ "conscientiousness", "openness", "agreeableness", "wheelbarrow", "rake", "mystery", "fantasy", "hurricane", "tornado" ]
4
3D (press for 2D)
PCA
KMeans
1,738,762,098.5218
clustering
rightvote
[ "", "" ]
9de46b546bbb4af2a14fc6336586667f
Salesforce/SFR-Embedding-2_R
[ "Mobile Phone", "Nike", "Amazon", "Apple", "Walmart", "Rebook", "Shoes", "Tenis" ]
2
3D (press for 2D)
PCA
KMeans
06693da39f9244fe91063e847e649012
text-embedding-004
[ "Mobile Phone", "Nike", "Amazon", "Apple", "Walmart", "Rebook", "Shoes", "Tenis" ]
2
3D (press for 2D)
PCA
KMeans
1,738,762,129.1828
clustering
leftvote
[ "", "" ]
1ab4a792f46541bba432f967e4a34e20
intfloat/e5-mistral-7b-instruct
[ "gray", "brunette", "black", "white", "historical fiction", "romance", "igneous", "metamorphic", "sedimentary", "pancreas", "stomach", "rum", "vodka", "tequila" ]
5
3D (press for 2D)
PCA
KMeans
f65ce64c9cb145dcb93e33824a9bacb7
mixedbread-ai/mxbai-embed-large-v1
[ "gray", "brunette", "black", "white", "historical fiction", "romance", "igneous", "metamorphic", "sedimentary", "pancreas", "stomach", "rum", "vodka", "tequila" ]
5
3D (press for 2D)
PCA
KMeans
1,738,762,150.046
clustering
rightvote
[ "", "" ]
0fc693642edb4a89a0a897d6d6a791c3
sentence-transformers/all-MiniLM-L6-v2
[ "Roman", "Egyptian", "Greek", "Mesopotamian", "Incan", "diamond", "sapphire", "emerald", "amethyst", "ruby", "topaz", "Pinterest", "TikTok", "Instagram" ]
3
3D (press for 2D)
PCA
KMeans
f4f00fb6dca4431fadfede47d893d646
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "Roman", "Egyptian", "Greek", "Mesopotamian", "Incan", "diamond", "sapphire", "emerald", "amethyst", "ruby", "topaz", "Pinterest", "TikTok", "Instagram" ]
3
3D (press for 2D)
PCA
KMeans
1,738,762,170.9624
clustering
leftvote
[ "", "" ]
50ac530cd4f345d28f4eb4942ee59c82
BAAI/bge-large-en-v1.5
[ "caldera", "composite", "shield", "cinder cone", "lava dome", "clarinet", "oboe", "flute", "cold", "coastal", "Atlantic", "Southern" ]
4
3D (press for 2D)
PCA
KMeans
9972d5c6bb7d47df87adb6b82f98ede4
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "caldera", "composite", "shield", "cinder cone", "lava dome", "clarinet", "oboe", "flute", "cold", "coastal", "Atlantic", "Southern" ]
4
3D (press for 2D)
PCA
KMeans
1,738,762,185.5057
clustering
rightvote
[ "", "" ]
25375306f4b147f09b86b40869eaf412
sentence-transformers/all-MiniLM-L6-v2
[ "polyethylene", "PVC", "nylon", "polystyrene", "Mandarin", "English" ]
2
3D (press for 2D)
PCA
KMeans
a418f1a74bc7403e8e63871b3727d6c8
GritLM/GritLM-7B
[ "polyethylene", "PVC", "nylon", "polystyrene", "Mandarin", "English" ]
2
3D (press for 2D)
PCA
KMeans
1,738,762,285.76
clustering
leftvote
[ "", "" ]
345f101473824fc9a4cca0bcf227b8b4
embed-english-v3.0
[ "winter", "fall", "Chinese", "Hindu", "Norse", "Celtic", "Roman", "Egyptian", "Greek", "B", "A", "O", "polar", "hot and dry", "cold", "coastal", "semi-arid", "rum", "vodka", "tequila", "gin" ]
5
3D (press for 2D)
PCA
KMeans
d407eb20615246fdb146caeca40a25f8
text-embedding-004
[ "winter", "fall", "Chinese", "Hindu", "Norse", "Celtic", "Roman", "Egyptian", "Greek", "B", "A", "O", "polar", "hot and dry", "cold", "coastal", "semi-arid", "rum", "vodka", "tequila", "gin" ]
5
3D (press for 2D)
PCA
KMeans
1,738,762,329.6737
clustering
rightvote
[ "", "" ]
770d74783c32421389759ebe2c0c7aa1
jinaai/jina-embeddings-v2-base-en
[ "anchoring bias", "availability bias", "hindsight bias", "drums", "guitar", "grilling", "sautéing", "leather", "linen", "wool", "hydrogen", "sodium", "oxygen", "nitrogen", "carbon", "calcium", "iron" ]
5
3D (press for 2D)
PCA
KMeans
62769e095bdc4f1cafe65227fef94efa
Salesforce/SFR-Embedding-2_R
[ "anchoring bias", "availability bias", "hindsight bias", "drums", "guitar", "grilling", "sautéing", "leather", "linen", "wool", "hydrogen", "sodium", "oxygen", "nitrogen", "carbon", "calcium", "iron" ]
5
3D (press for 2D)
PCA
KMeans
1,738,762,395.1063
clustering
leftvote
[ "", "" ]
e0318ab913004dbb9fe6549139425f00
Salesforce/SFR-Embedding-2_R
[ "gray", "blonde", "brunette", "redhead", "haiku", "ode", "limerick", "ballad", "epic", "free verse", "top hat", "beanie", "plane", "convex", "Arctic", "Indian", "Atlantic" ]
5
3D (press for 2D)
PCA
KMeans
c741a54e4c874d8a9ecaf79e3ddacc5a
GritLM/GritLM-7B
[ "gray", "blonde", "brunette", "redhead", "haiku", "ode", "limerick", "ballad", "epic", "free verse", "top hat", "beanie", "plane", "convex", "Arctic", "Indian", "Atlantic" ]
5
3D (press for 2D)
PCA
KMeans
1,738,762,561.5921
clustering
leftvote
[ "", "" ]
2bae9fd3ec534fd0bf8b36069b7f8987
text-embedding-3-large
[ "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such", "$f(x)$ can be represented by a field. In this scenario, we get $y$ from $x$ by solving an initial value problem:\n$$\\frac{dz}{dt} = g(z, t, \\theta); \\quad z(t=0) \\equiv x, z(t=t_\\text{f})\\equiv y.$$ ", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces.", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`", "ssh tunnel: `ssh -f [email protected] -L local-port:host:remote-port -N`", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring.", "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections." ]
3
3D (press for 2D)
PCA
KMeans
22c685d294c64c5b874d444961b1180c
nomic-ai/nomic-embed-text-v1.5
[ "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such", "$f(x)$ can be represented by a field. In this scenario, we get $y$ from $x$ by solving an initial value problem:\n$$\\frac{dz}{dt} = g(z, t, \\theta); \\quad z(t=0) \\equiv x, z(t=t_\\text{f})\\equiv y.$$ ", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces.", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`", "ssh tunnel: `ssh -f [email protected] -L local-port:host:remote-port -N`", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring.", "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections." ]
3
3D (press for 2D)
PCA
KMeans
1,738,762,796.7433
clustering
rightvote
[ "", "" ]
7e39178a35e4498fb221a9cfdd73dd52
sentence-transformers/all-MiniLM-L6-v2
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
76b205acad144409af072e87a1514fd7
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,762,844.1965
clustering
rightvote
[ "", "" ]
c4bf4471fbab497db9cf1028f93c0b43
intfloat/multilingual-e5-large-instruct
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
74d97c11190349b3b0eda2fb9beeb195
text-embedding-004
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,762,899.0983
clustering
rightvote
[ "", "" ]
23068f3458a94be886de1ce87e1d4b55
text-embedding-004
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1e42c9e9a60f4cec8750190c175725d5
embed-english-v3.0
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,762,945.7525
clustering
tievote
[ "", "" ]
a9499ebb065241e69b6e3e9db7135fe2
voyage-multilingual-2
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
91c0a61dab794b17b113ce5bc3558348
intfloat/multilingual-e5-large-instruct
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,738,762,946.5053
clustering
rightvote
[ "", "" ]
9a6cd8222ddc4d8daa02e12053319b87
text-embedding-004
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
6b0413044e0243489f2de0a7d1ca1c47
intfloat/e5-mistral-7b-instruct
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,763,021.8863
clustering
rightvote
[ "", "" ]
a1c304f9cec34aefbe7794b89a6cc580
text-embedding-3-large
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
26356c5cee98456ebe7d2eae1f28a718
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,763,063.3142
clustering
rightvote
[ "", "" ]
56cc0ef844fe49ebab1fa30ecd9a2684
jinaai/jina-embeddings-v2-base-en
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
1
3D (press for 2D)
PCA
KMeans
364455a975c04bb496842455390b9c02
text-embedding-3-large
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
1
3D (press for 2D)
PCA
KMeans
1,738,763,104.7858
clustering
leftvote
[ "", "" ]
7a4f58a0bb8f46fc901708e1e760dfe9
Salesforce/SFR-Embedding-2_R
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
fee74bb17c304a17b14a9378c468ff7e
sentence-transformers/all-MiniLM-L6-v2
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
3D (press for 2D)
PCA
KMeans
1,738,763,194.4491
clustering
rightvote
[ "", "" ]
e6c2bf59f2314a979af985433ac13ab5
voyage-multilingual-2
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
2D (press for 3D)
PCA
KMeans
78caf84879f24819a0e48eacb9f401d3
text-embedding-004
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
2D (press for 3D)
PCA
KMeans
1,738,763,225.9459
clustering
rightvote
[ "", "" ]
6065a094be19431dbce25d576e8e8116
GritLM/GritLM-7B
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
2D (press for 3D)
PCA
KMeans
04224042c9054a48aef54921e4709884
intfloat/multilingual-e5-large-instruct
[ "I normalise the spectrum to units of $\\sigma_\\mathrm{thermal}$, taking $p_\\mathrm{\\alpha}=1.7 \\sigma_\\mathrm{thermal}$, roughly what we computed in earlier in the [thermal noise](#thermal-noise) and momentum sections.", "We can estimate the thermal noise of momentum measurements as gaussian noise with variance $\\sigma_\\mathrm{thermal}^2=4 m k_B T \\frac{\\omega}{Q}t$. If we take $m \\approx 10 \\,\\mathrm{\\mu g/cm}^3 \\times \\frac{4}{3} \\pi (3 \\,\\mathrm{mm})^3 \\approx 1 \\, \\mathrm{ng}$, $Q\\approx10^4$, $T=1\\, \\mathrm{mK}$, $\\omega = 650 \\, \\mathrm{Hz}$ and $t\\approx1\\,\\mathrm{s}$, we get $\\sigma_\\mathrm{thermal} \\approx 6\\times10^{-20} \\,\\mathrm{kg\\, m/s}$. ", "Calibration is key with all measurement devices. In particle physics, we often calibrate our experiments using calibration sources that can mimic the signal we are measuring. Such alibration sources can be used to establish absolute calibrations of particle detectors, instead of having to model the entire chain of detector physics; in practice, often both approaches are used to establish confidence in our understanding of the detector.", "Consider a function $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, which represents an invertible mapping between spaces. This mapping can be utilized to transform a random variable $X$ according to: $$Y = f(X)$$", "Given samples from $Y$ obtained through simulation-based inference, we aim to optimize the log-posterior $P_Y(y)$ through the following procedure: For each sample $y_i$, we compute: $$P_X(f_{\\theta}^{-1}(x)) \\left|\\frac{\\partial f^{-1}}{\\partial x}\\right|$$ and minimize this expression with respect to parameters $\\theta$.", "When there is a transformation between distributions, $f: \\mathbb{R}^n \\rightarrow \\mathbb{R}^n$, distributions represented by the initial and the transformed spaces are related as such: ", "Find out which users' home directories are biggest: `sudo du -sh /home/* | sort -rh`", "Force unmount broken sshfs directory (after killing ssh and sshfs): `sudo umount -l [MOUNT_DIRECTORY]`" ]
3
2D (press for 3D)
PCA
KMeans
1,738,805,729.5424
clustering
rightvote
[ "", "" ]
35d408bf07a74b6aa18a6d1799db891a
sentence-transformers/all-MiniLM-L6-v2
[ "confirmation bias", "dunning-kruger effect", "Uranus", "Earth", "Neptune", "Jupiter", "Venus", "apple", "banana", "O", "AB", "A", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
2D (press for 3D)
PCA
KMeans
e5fa9b7f331842a797c541faba99c9d9
Salesforce/SFR-Embedding-2_R
[ "confirmation bias", "dunning-kruger effect", "Uranus", "Earth", "Neptune", "Jupiter", "Venus", "apple", "banana", "O", "AB", "A", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
2D (press for 3D)
PCA
KMeans
1,738,842,153.4422
clustering
leftvote
[ "", "" ]
e3e41639f5804092856a06d14b3d0ed0
embed-english-v3.0
[ "| 年 | 出来事 | 研究者 |\n| ---- | --------------------------------------------------- | --------------------- |\n| 1890 | アンゴラウサギの4細胞胚をベルギー種のメスに移植し、4匹のベルギー種と2匹のアンゴラ種の子ウサギが誕生 | Walter Heape |\n| 1897 | ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される | Walter Heape |\n| 1926 | イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠 | Walton |\n| 1951 | ウサギで精子の受精能力(capacitation)の必要性が初めて実証される | Chang; Austin |\n| 1959 | ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる | Chang |\n| 1977 | ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功 | Iritani and Niwa |\n| 1983 | ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される | Garner et al. |\n| 1986 | ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生 | Hanada et al. |\n| 1989 | 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認) | Johnson et al. (USDA) |", "- **1890年**: アンゴラウサギの4細胞胚をベルギー種のメスに移植し、4匹のベルギー種と2匹のアンゴラ種の子ウサギが誕生(Walter Heape) \n- **1897年**: ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される(Walter Heape) \n- **1926年**: イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠(Walton) \n- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang) \n- **1977年**: ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功(Iritani and Niwa) \n- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.) \n- **1986年**: ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生(Hanada et al.) \n- **1989年**: 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認)(Johnson et al. (USDA)) ", "- 1890年: ウサギの胚を移植(Walter Heape) \n- 1897年: 受容体に移植する技術が登場(Walter Heape) \n- 1926年: 人工授精でウサギが妊娠(Walton) \n- 1951年: 受精能力が必要なことを発見(Chang; Austin) \n- 1959年: ウサギが体外受精で子孫を産む(Chang) \n- 1977年: 牛の体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の違いを測定(Garner et al.) \n- 1986年: 受精卵を使って牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子でウサギが誕生(Johnson et al. (USDA))", "- 1891年: アンゴラウサギの胚を移植し、ベルギー種のウサギが誕生(Walter Heape) \n- 1898年: ウサギ胚を針の先に刺して移植する方法が登場(Walter Heape) \n- 1925年: イギリスで採取された精液をスコットランドで人工授精し、ウサギが妊娠(Walton) \n- 1950年: ウサギで精子の受精能力の必要性が確認される(Chang; Austin) \n- 1960年: ウサギが体外受精で子孫を産む(Chang) \n- 1978年: ウサギの精子を受精能力化した後に牛の体外受精が成功(Iritani and Niwa) \n- 1985年: X染色体とY染色体のDNA含有量の違いが測定される(Garner et al.) \n- 1987年: ウサギの卵管で培養された受精卵から牛が誕生(Hanada et al.) \n- 1990年: 性選別された精子でウサギの子孫が誕生(Johnson et al. (USDA))", "- 1890年: アンゴラウサギの4細胞胚をベルギー種のメスに移植し、ベルギー種とアンゴラ種の子ウサギが誕生(James Smith) \n- 1897年: ウサギ胚を針の先に刺して受容体に直接移植する技術が登場(Robert Brown) \n- 1926年: 採取された精液を人工授精し、ウサギが妊娠(Walters) \n- 1951年: 精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Anderson) \n- 1959年: ウサギが体外受精(IVF)で生きた子孫を産む(Chang and White) \n- 1977年: ウサギの精子を受精能力化した後に牛の体外受精が成功(Iritani and Sato) \n- 1983年: X染色体とY染色体のDNA含有量の違いが測定される(Garner and Lee) \n- 1986年: ウサギの卵管で培養された受精卵から子牛が誕生(Honda et al.) \n- 1989年: 性選別された精子でウサギの子孫が誕生(Johnston et al. (USDA))", "- 1890年: アンゴラウサギとベルギー種の交配で新種が誕生(Walter Heape) \n- 1897年: ウサギの胚を取り出し、体外で成長させる技術が開発(Walter Heape) \n- 1926年: ケンブリッジで採取された卵子をエディンバラで受精(Walton) \n- 1951年: ウサギの精子が体外で成熟することを確認(Chang; Austin) \n- 1959年: ウサギがクローン技術で生まれた最初の哺乳類となる(Chang) \n- 1977年: ウサギの体内で人間の精子を受精能力化し、体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の大きさが異なることを初めて確認(Garner et al.) \n- 1986年: 体外受精した受精卵をウサギに移植し、クローン牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子を使い、全てオスのウサギが誕生(Johnson et al. (USDA))", "- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang) \n- **1977年**: ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功(Iritani and Niwa) \n- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.)", "- **1897年**: ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される(Walter Heape) \n- **1926年**: イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠(Walton) \n- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang)\n- 1977年: ウサギの体内で人間の精子を受精能力化し、体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の大きさが異なることを初めて確認(Garner et al.) \n- 1986年: 体外受精した受精卵をウサギに移植し、クローン牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子を使い、全てオスのウサギが誕生(Johnson et al. (USDA))", "- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.) \n- **1986年**: ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生(Hanada et al.) \n- **1989年**: 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認)(Johnson et al. (USDA))" ]
3
3D (press for 2D)
PCA
KMeans
185362d59464460f87b500c2c8f1a763
mixedbread-ai/mxbai-embed-large-v1
[ "| 年 | 出来事 | 研究者 |\n| ---- | --------------------------------------------------- | --------------------- |\n| 1890 | アンゴラウサギの4細胞胚をベルギー種のメスに移植し、4匹のベルギー種と2匹のアンゴラ種の子ウサギが誕生 | Walter Heape |\n| 1897 | ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される | Walter Heape |\n| 1926 | イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠 | Walton |\n| 1951 | ウサギで精子の受精能力(capacitation)の必要性が初めて実証される | Chang; Austin |\n| 1959 | ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる | Chang |\n| 1977 | ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功 | Iritani and Niwa |\n| 1983 | ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される | Garner et al. |\n| 1986 | ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生 | Hanada et al. |\n| 1989 | 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認) | Johnson et al. (USDA) |", "- **1890年**: アンゴラウサギの4細胞胚をベルギー種のメスに移植し、4匹のベルギー種と2匹のアンゴラ種の子ウサギが誕生(Walter Heape) \n- **1897年**: ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される(Walter Heape) \n- **1926年**: イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠(Walton) \n- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang) \n- **1977年**: ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功(Iritani and Niwa) \n- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.) \n- **1986年**: ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生(Hanada et al.) \n- **1989年**: 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認)(Johnson et al. (USDA)) ", "- 1890年: ウサギの胚を移植(Walter Heape) \n- 1897年: 受容体に移植する技術が登場(Walter Heape) \n- 1926年: 人工授精でウサギが妊娠(Walton) \n- 1951年: 受精能力が必要なことを発見(Chang; Austin) \n- 1959年: ウサギが体外受精で子孫を産む(Chang) \n- 1977年: 牛の体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の違いを測定(Garner et al.) \n- 1986年: 受精卵を使って牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子でウサギが誕生(Johnson et al. (USDA))", "- 1891年: アンゴラウサギの胚を移植し、ベルギー種のウサギが誕生(Walter Heape) \n- 1898年: ウサギ胚を針の先に刺して移植する方法が登場(Walter Heape) \n- 1925年: イギリスで採取された精液をスコットランドで人工授精し、ウサギが妊娠(Walton) \n- 1950年: ウサギで精子の受精能力の必要性が確認される(Chang; Austin) \n- 1960年: ウサギが体外受精で子孫を産む(Chang) \n- 1978年: ウサギの精子を受精能力化した後に牛の体外受精が成功(Iritani and Niwa) \n- 1985年: X染色体とY染色体のDNA含有量の違いが測定される(Garner et al.) \n- 1987年: ウサギの卵管で培養された受精卵から牛が誕生(Hanada et al.) \n- 1990年: 性選別された精子でウサギの子孫が誕生(Johnson et al. (USDA))", "- 1890年: アンゴラウサギの4細胞胚をベルギー種のメスに移植し、ベルギー種とアンゴラ種の子ウサギが誕生(James Smith) \n- 1897年: ウサギ胚を針の先に刺して受容体に直接移植する技術が登場(Robert Brown) \n- 1926年: 採取された精液を人工授精し、ウサギが妊娠(Walters) \n- 1951年: 精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Anderson) \n- 1959年: ウサギが体外受精(IVF)で生きた子孫を産む(Chang and White) \n- 1977年: ウサギの精子を受精能力化した後に牛の体外受精が成功(Iritani and Sato) \n- 1983年: X染色体とY染色体のDNA含有量の違いが測定される(Garner and Lee) \n- 1986年: ウサギの卵管で培養された受精卵から子牛が誕生(Honda et al.) \n- 1989年: 性選別された精子でウサギの子孫が誕生(Johnston et al. (USDA))", "- 1890年: アンゴラウサギとベルギー種の交配で新種が誕生(Walter Heape) \n- 1897年: ウサギの胚を取り出し、体外で成長させる技術が開発(Walter Heape) \n- 1926年: ケンブリッジで採取された卵子をエディンバラで受精(Walton) \n- 1951年: ウサギの精子が体外で成熟することを確認(Chang; Austin) \n- 1959年: ウサギがクローン技術で生まれた最初の哺乳類となる(Chang) \n- 1977年: ウサギの体内で人間の精子を受精能力化し、体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の大きさが異なることを初めて確認(Garner et al.) \n- 1986年: 体外受精した受精卵をウサギに移植し、クローン牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子を使い、全てオスのウサギが誕生(Johnson et al. (USDA))", "- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang) \n- **1977年**: ウサギの子宮または卵管で精子を受精能力化(capacitation)した後に牛の体外受精が成功(Iritani and Niwa) \n- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.)", "- **1897年**: ウサギ胚を針の先端に刺して受容体に直接移植する技術(培養液を使わない方法)が記述される(Walter Heape) \n- **1926年**: イギリスのケンブリッジで採取された精液をスコットランドのエディンバラで人工授精し、ウサギが妊娠(Walton) \n- **1951年**: ウサギで精子の受精能力(capacitation)の必要性が初めて実証される(Chang; Austin) \n- **1959年**: ウサギが体外受精(IVF)による生きた子孫を産んだ最初の哺乳類となる(Chang)\n- 1977年: ウサギの体内で人間の精子を受精能力化し、体外受精が成功(Iritani and Niwa) \n- 1983年: X染色体とY染色体の大きさが異なることを初めて確認(Garner et al.) \n- 1986年: 体外受精した受精卵をウサギに移植し、クローン牛が誕生(Hanada et al.) \n- 1989年: 性選別した精子を使い、全てオスのウサギが誕生(Johnson et al. (USDA))", "- **1983年**: ウサギを含む動物でX染色体とY染色体を持つ精子のDNA含有量の違いが初めて測定される(Garner et al.) \n- **1986年**: ウサギの卵管で培養された受精卵を用いて、2頭の子牛が誕生(Hanada et al.) \n- **1989年**: 初めて性選別された精子からウサギの子孫が誕生(94%が雌であることを確認)(Johnson et al. (USDA))" ]
3
3D (press for 2D)
PCA
KMeans
1,722,266,426.4606
clustering
tievote
[ "", "" ]
8231665ecd594c86b9bee0001d5e989c
BAAI/bge-large-en-v1.5
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
c2047173c4764d6ebfaf1db67e37ed7d
GritLM/GritLM-7B
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,722,266,465.3044
clustering
tievote
[ "", "" ]
e40f45b38d8d4568a17340ab5c831eda
intfloat/multilingual-e5-large-instruct
[ "Tesla’s Model 3 will boast a 200-mile or greater range, cost $35,000", "How to Buy an Android Car DVD with GPS Navigation?", "For those considering voting, your most 'progressive' candidate is still a fascist.", "She's plotting her revenge guys, help!", "Bandar Bola - Apa Sucker Akan Beli Obligasi Lotus Esprit Submarine Untuk $ 1.000.000?", "Durch Die Nacht Mit... Henry Rollins und Shirin Neshat (2006) \"Henry Rollins hangs out with Iranian artist Shirin Neshat as part of a Dutch TV show.\"", "Black Lives Matter protesters block San Francisco's Bay Bridge", "Ceiling Cat vs. Basement Cat; Arial Image from Syria Shows Biblical Struggle", "“Allure” by any other name: The double standards of rape culture, racism, and gender in pop music", "New Zealand's Transgender Prisoners Fear Double Bunking Will Lead to More Rape", "Homeless return to Sacramento City Hall under political, legal cloud", "Meet Rogan and Bosley, two senior grumpy Persian brothers" ]
3
3D (press for 2D)
PCA
KMeans
e7b78554b50d469abeebf74e9aef95f0
text-embedding-3-large
[ "Tesla’s Model 3 will boast a 200-mile or greater range, cost $35,000", "How to Buy an Android Car DVD with GPS Navigation?", "For those considering voting, your most 'progressive' candidate is still a fascist.", "She's plotting her revenge guys, help!", "Bandar Bola - Apa Sucker Akan Beli Obligasi Lotus Esprit Submarine Untuk $ 1.000.000?", "Durch Die Nacht Mit... Henry Rollins und Shirin Neshat (2006) \"Henry Rollins hangs out with Iranian artist Shirin Neshat as part of a Dutch TV show.\"", "Black Lives Matter protesters block San Francisco's Bay Bridge", "Ceiling Cat vs. Basement Cat; Arial Image from Syria Shows Biblical Struggle", "“Allure” by any other name: The double standards of rape culture, racism, and gender in pop music", "New Zealand's Transgender Prisoners Fear Double Bunking Will Lead to More Rape", "Homeless return to Sacramento City Hall under political, legal cloud", "Meet Rogan and Bosley, two senior grumpy Persian brothers" ]
3
3D (press for 2D)
PCA
KMeans
1,732,204,561.614
clustering
tievote
[ "", "" ]
59607ba49a8b4354af998287f00ed8d2
text-embedding-004
[ "dome", "volcanic", "fold", "water filter", "camping stove", "sleeping bag", "backpack" ]
2
3D (press for 2D)
PCA
KMeans
1d70af55f8ee494b8c9f36a8d4624455
GritLM/GritLM-7B
[ "dome", "volcanic", "fold", "water filter", "camping stove", "sleeping bag", "backpack" ]
2
3D (press for 2D)
PCA
KMeans
1,732,204,601.987
clustering
rightvote
[ "", "" ]
713bf09423a4417a8720caf32aa794ec
embed-english-v3.0
[ "drought", "hurricane", "tornado", "fog", "Brachiosaurus", "Velociraptor", "Pteranodon", "Tyrannosaurus", "B", "O" ]
3
3D (press for 2D)
PCA
KMeans
a8d8b1a640da47dc9c09ad6051d61127
intfloat/multilingual-e5-large-instruct
[ "drought", "hurricane", "tornado", "fog", "Brachiosaurus", "Velociraptor", "Pteranodon", "Tyrannosaurus", "B", "O" ]
3
3D (press for 2D)
PCA
KMeans
1,732,238,310.0725
clustering
rightvote
[ "", "" ]
0ff0ccb84b894574b425fc722a8543de
voyage-multilingual-2
[ "Gemini", "Capricorn", "Aquarius", "Virgo", "Cancer", "Scorpio", "Apple", "Huawei", "OnePlus", "Xiaomi", "fascism", "conservatism", "convex", "prismatic", "concave", "progressive" ]
4
3D (press for 2D)
PCA
KMeans
3ad3bd16adfb4cadb656f11618f4ccd7
Salesforce/SFR-Embedding-2_R
[ "Gemini", "Capricorn", "Aquarius", "Virgo", "Cancer", "Scorpio", "Apple", "Huawei", "OnePlus", "Xiaomi", "fascism", "conservatism", "convex", "prismatic", "concave", "progressive" ]
4
3D (press for 2D)
PCA
KMeans
1,732,238,378.8878
clustering
rightvote
[ "", "" ]
1b4bd59bd371488d9cc89f7a29864095
BAAI/bge-large-en-v1.5
[ "grilling", "steaming", "boiling", "orchid", "lily", "tulip", "fusilli", "penne", "lasagna", "ravioli", "spaghetti", "rupee", "pound", "euro", "dollar", "yen" ]
4
3D (press for 2D)
PCA
KMeans
501dc8c3ec2f4bdaa5bf0fa17858b20d
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "grilling", "steaming", "boiling", "orchid", "lily", "tulip", "fusilli", "penne", "lasagna", "ravioli", "spaghetti", "rupee", "pound", "euro", "dollar", "yen" ]
4
3D (press for 2D)
PCA
KMeans
1,732,304,023.1549
clustering
leftvote
[ "", "" ]
2abc17a5da724e04a9906b80218d6154
Salesforce/SFR-Embedding-2_R
[ "Cygnus", "Cassiopeia", "Taurus", "Orion", "Ursa Major", "Scorpius", "Leo", "Triceratops", "Tyrannosaurus", "Ankylosaurus", "orange", "kiwi", "apple", "grape", "peach", "mango", "rupee", "dollar", "euro", "pound", "yuan" ]
4
3D (press for 2D)
PCA
KMeans
ae1e9e7718c74de598c15e17bd4deb86
jinaai/jina-embeddings-v2-base-en
[ "Cygnus", "Cassiopeia", "Taurus", "Orion", "Ursa Major", "Scorpius", "Leo", "Triceratops", "Tyrannosaurus", "Ankylosaurus", "orange", "kiwi", "apple", "grape", "peach", "mango", "rupee", "dollar", "euro", "pound", "yuan" ]
4
3D (press for 2D)
PCA
KMeans
1,730,903,999.328
clustering
tievote
[ "", "" ]
03f0f264892c41f280ec2b3492c22ef7
BAAI/bge-large-en-v1.5
[ "baseball cap", "cowboy hat", "beanie", "convex", "parabolic", "basketball", "volleyball" ]
3
2D (press for 3D)
PCA
KMeans
0901c93377d04d3eae507a7f87cddf94
text-embedding-004
[ "baseball cap", "cowboy hat", "beanie", "convex", "parabolic", "basketball", "volleyball" ]
3
2D (press for 3D)
PCA
KMeans
1,731,300,951.1924
clustering
leftvote
[ "", "" ]
0d6ab8d6646243afb9034accb33a4512
mixedbread-ai/mxbai-embed-large-v1
[ "Kia", "GMC", "BMW", "Toyota", "Volkswagen", "griffin", "werewolf", "dragon", "centaur", "phoenix" ]
2
3D (press for 2D)
PCA
KMeans
c2497af7547e443aacb6db06629c523e
sentence-transformers/all-MiniLM-L6-v2
[ "Kia", "GMC", "BMW", "Toyota", "Volkswagen", "griffin", "werewolf", "dragon", "centaur", "phoenix" ]
2
3D (press for 2D)
PCA
KMeans
1,731,301,000.4996
clustering
tievote
[ "", "" ]
34079265e88c4d67abf89568c6b233e8
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "Neptune", "Mars", "Uranus", "Jupiter", "Saturn", "Volkswagen", "Honda" ]
2
3D (press for 2D)
UMAP
KMeans
95c01e08b4924761ba0c3113432f6c4f
text-embedding-004
[ "Neptune", "Mars", "Uranus", "Jupiter", "Saturn", "Volkswagen", "Honda" ]
2
3D (press for 2D)
UMAP
KMeans
1,731,301,092.2252
clustering
bothbadvote
[ "", "" ]
db7ebb41ed5e48dba02c05548506bb6b
GritLM/GritLM-7B
[ "altostratus", "cumulus", "nimbus", "stratus", "Baroque", "Impressionism", "Cubism", "Renaissance", "Surrealism", "giraffe", "dolphin", "koala", "penguin", "lion", "elephant", "tiger", "Africa", "North America", "Asia", "Australia", "Europe", "Antarctica" ]
4
3D (press for 2D)
UMAP
KMeans
03b92e5ea84e42c5b3d1858038f22763
jinaai/jina-embeddings-v2-base-en
[ "altostratus", "cumulus", "nimbus", "stratus", "Baroque", "Impressionism", "Cubism", "Renaissance", "Surrealism", "giraffe", "dolphin", "koala", "penguin", "lion", "elephant", "tiger", "Africa", "North America", "Asia", "Australia", "Europe", "Antarctica" ]
4
3D (press for 2D)
UMAP
KMeans
1,731,301,170.1285
clustering
rightvote
[ "", "" ]
5ac8044066dc4a198ffeb6c351cfc157
sentence-transformers/all-MiniLM-L6-v2
[ "pancreas", "liver", "brain", "lungs", "heart", "fedora", "beanie", "beret", "bowler", "cowboy hat", "fruit", "mixed", "livestock", "vegetable", "poultry", "crop", "Antarctica", "Africa", "Europe", "GPU", "CPU", "hard drive", "motherboard", "power supply", "SSD", "RAM" ]
5
3D (press for 2D)
PCA
KMeans
a7d8f41af3a14ec393a63fca6347223c
voyage-multilingual-2
[ "pancreas", "liver", "brain", "lungs", "heart", "fedora", "beanie", "beret", "bowler", "cowboy hat", "fruit", "mixed", "livestock", "vegetable", "poultry", "crop", "Antarctica", "Africa", "Europe", "GPU", "CPU", "hard drive", "motherboard", "power supply", "SSD", "RAM" ]
5
3D (press for 2D)
PCA
KMeans
1,731,301,280.8331
clustering
leftvote
[ "", "" ]
93f6dd066f4a4943ae360f6cfbf5c2c7
embed-english-v3.0
[ "trout", "salmon", "composite", "caldera", "lava dome", "cinder cone", "shield", "roasting", "steaming", "baking", "grilling", "boiling", "sedimentary", "metamorphic", "igneous", "Orion", "Cygnus", "Taurus" ]
5
3D (press for 2D)
UMAP
KMeans
895c17ab2a0c4ad1854a659cad74ac8d
intfloat/e5-mistral-7b-instruct
[ "trout", "salmon", "composite", "caldera", "lava dome", "cinder cone", "shield", "roasting", "steaming", "baking", "grilling", "boiling", "sedimentary", "metamorphic", "igneous", "Orion", "Cygnus", "Taurus" ]
5
3D (press for 2D)
UMAP
KMeans
1,731,301,329.166
clustering
tievote
[ "", "" ]
0a99cf3700e2435fa79dc830ba66eb00
intfloat/e5-mistral-7b-instruct
[ "oolong", "chamomile", "pu-erh", "green", "Cubism", "Impressionism" ]
2
3D (press for 2D)
PCA
KMeans
7db21df6d8a54d4dbb6700e5f3c1d93a
intfloat/multilingual-e5-large-instruct
[ "oolong", "chamomile", "pu-erh", "green", "Cubism", "Impressionism" ]
2
3D (press for 2D)
PCA
KMeans
1,731,301,369.0921
clustering
rightvote
[ "", "" ]
50879395bce243cfa3077859f1a30b19
GritLM/GritLM-7B
[ "unicorn", "werewolf", "griffin", "centaur", "redhead", "white", "brunette", "black", "blonde" ]
2
3D (press for 2D)
PCA
KMeans
4fecb7a84f064bb4a30d3ea364f865ea
intfloat/multilingual-e5-large-instruct
[ "unicorn", "werewolf", "griffin", "centaur", "redhead", "white", "brunette", "black", "blonde" ]
2
3D (press for 2D)
PCA
KMeans
1,724,060,664.0712
clustering
rightvote
[ "", "" ]
847b509f5f37472e8d86779d45a32610
BAAI/bge-large-en-v1.5
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
5adbc43cdcac498eb67c967ad0cfeb0c
sentence-transformers/all-MiniLM-L6-v2
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,724,098,291.8183
clustering
rightvote
[ "", "" ]
09d67d7034814900a1539f51561a0422
intfloat/multilingual-e5-large-instruct
[ "Quiero renovar mi celular", "Quiero cambiarme de plan", "Haré portabilidad", "Estoy pensando en cambiarme de operador", "¿Quiero cambiarme de celular", "Mañana me cambiaré de plan a uno más bajo" ]
2
3D (press for 2D)
PCA
KMeans
0feb6b08f3a4471fad07e16412c19b7c
GritLM/GritLM-7B
[ "Quiero renovar mi celular", "Quiero cambiarme de plan", "Haré portabilidad", "Estoy pensando en cambiarme de operador", "¿Quiero cambiarme de celular", "Mañana me cambiaré de plan a uno más bajo" ]
2
3D (press for 2D)
PCA
KMeans
1,724,163,958.9231
clustering
rightvote
[ "", "" ]
2daa9bdee69c4792aa497adf12b1ab28
sentence-transformers/all-MiniLM-L6-v2
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
0e189a82702941dba2c8f719d3a986a5
text-embedding-004
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,724,164,131.8129
clustering
leftvote
[ "", "" ]
73c4af80b98d431eba13a3b40ac9b3d7
mixedbread-ai/mxbai-embed-large-v1
[ "It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?" ]
3
3D (press for 2D)
PCA
KMeans
b45cf608bead4124b0d7596b5384345c
voyage-multilingual-2
[ "It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?" ]
3
3D (press for 2D)
PCA
KMeans
1,724,280,294.9014
clustering
tievote
[ "", "" ]
d9b5e5b41abf426181ad9670782d952e
sentence-transformers/all-MiniLM-L6-v2
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
d710f7648b854cf793aef2f3a8c661cb
nomic-ai/nomic-embed-text-v1.5
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,724,291,653.885
clustering
leftvote
[ "", "" ]
400fa553f9094ab9b12e6ea1256ec2bc
jinaai/jina-embeddings-v2-base-en
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
83602d74a2cf4a289b5441845f4e176f
Salesforce/SFR-Embedding-2_R
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,724,349,504.3035
clustering
tievote
[ "", "" ]
f6f2a09e097c42b48b2d7f5dfb6768c8
sentence-transformers/all-MiniLM-L6-v2
[ "aap kaise ho", "How are you", "I am fine", "Mai theek hu", "mai bhi theek hu", "I am also fine", "Ye college is a great place for studying", "This college is good for studying", "Ye college boht badhiya hai", "Mujhe khana khana hai", "This college is very good place" ]
2
2D (press for 3D)
PCA
KMeans
67375df8d26e4996b43af1c9447756e0
intfloat/multilingual-e5-large-instruct
[ "aap kaise ho", "How are you", "I am fine", "Mai theek hu", "mai bhi theek hu", "I am also fine", "Ye college is a great place for studying", "This college is good for studying", "Ye college boht badhiya hai", "Mujhe khana khana hai", "This college is very good place" ]
2
2D (press for 3D)
PCA
KMeans
1,731,563,878.7289
clustering
leftvote
[ "", "" ]
56a92e40c6e34c0c930858252c81c687
intfloat/multilingual-e5-large-instruct
[ "bus", "motorcycle", "boat", "train", "car", "cotton", "linen", "leather", "wool", "silk", "polyester", "denim", "hydroelectric", "biomass", "geothermal", "solar", "tidal", "cycling", "gymnastics", "athletics", "swimming", "archery" ]
2
3D (press for 2D)
PCA
KMeans
c81fb92d58324d19b4ee078660730dc1
Salesforce/SFR-Embedding-2_R
[ "bus", "motorcycle", "boat", "train", "car", "cotton", "linen", "leather", "wool", "silk", "polyester", "denim", "hydroelectric", "biomass", "geothermal", "solar", "tidal", "cycling", "gymnastics", "athletics", "swimming", "archery" ]
2
3D (press for 2D)
PCA
KMeans
1,731,567,969.971
clustering
rightvote
[ "", "" ]
2d154bd54af645d4abb1c33705a2e9d7
GritLM/GritLM-7B
[ "I like to eat pizza", "I like to eat hamburgers", "I like to play soccer", "I like playing badminton", "I like to have a hotdog from time to time", "I like to play football" ]
2
2D (press for 3D)
PCA
KMeans
085710e48c674d9baacc5543040a3718
text-embedding-004
[ "I like to eat pizza", "I like to eat hamburgers", "I like to play soccer", "I like playing badminton", "I like to have a hotdog from time to time", "I like to play football" ]
2
2D (press for 3D)
PCA
KMeans
1,731,396,477.6223
clustering
leftvote
[ "", "" ]
9acad86d01d4490a8ffd8925fd86f562
text-embedding-3-large
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
14724d659797415fb361ec71152ac256
BAAI/bge-large-en-v1.5
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,731,396,509.0838
clustering
rightvote
[ "", "" ]
365db30a6de548ab97ec315ecb7d2414
nomic-ai/nomic-embed-text-v1.5
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
c170ecf405414c0a83ef8bb7bcd71cd5
text-embedding-3-large
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,723,244,337.8557
clustering
rightvote
[ "", "" ]
8ee353339b874131883f4e758c4fb6c2
intfloat/e5-mistral-7b-instruct
[ "Apple", "Samsung", "Huawei", "LG", "OnePlus", "Xiaomi", "wisdom tooth", "molar", "incisor", "premolar", "canine", "Opera", "Safari", "Brave", "Edge", "Firefox", "Chrome", "Capricorn", "Leo", "Taurus", "Aries", "Scorpio", "Libra", "Cancer", "Gemini", "canoe", "motorboat", "yacht", "catamaran" ]
5
3D (press for 2D)
PCA
KMeans
dca734cd08a946dc991a76cbd4459fd7
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "Apple", "Samsung", "Huawei", "LG", "OnePlus", "Xiaomi", "wisdom tooth", "molar", "incisor", "premolar", "canine", "Opera", "Safari", "Brave", "Edge", "Firefox", "Chrome", "Capricorn", "Leo", "Taurus", "Aries", "Scorpio", "Libra", "Cancer", "Gemini", "canoe", "motorboat", "yacht", "catamaran" ]
5
3D (press for 2D)
PCA
KMeans
1,723,409,498.4434
clustering
bothbadvote
[ "", "" ]
98569eae160342459406a000ac1341bd
GritLM/GritLM-7B
[ "shear wall design", "window header", "subfloor spacinng", "joist design", "beam clear span", "anchor bolt design", "jack stud design" ]
2
3D (press for 2D)
PCA
KMeans
ae75439bc445400696766ec73cdf8625
sentence-transformers/all-MiniLM-L6-v2
[ "shear wall design", "window header", "subfloor spacinng", "joist design", "beam clear span", "anchor bolt design", "jack stud design" ]
2
3D (press for 2D)
PCA
KMeans
1,723,409,942.498
clustering
tievote
[ "", "" ]
f26db202e63e41289a84e01ff79a1a2e
intfloat/multilingual-e5-large-instruct
[ "I-Joist Spacing", "Floor span", "shear wall design", "opening width", "jack studs design", "subfloor thickness", "header thickness", "soil capacity", "footing with stem wall", "bearing capacity", "frost depth", "anchor bolt spacing", "SEER rating", "R-value", "water efficiency", "energy consumption" ]
4
3D (press for 2D)
PCA
KMeans
eaf2988a721845c695bca77835c10fec
voyage-multilingual-2
[ "I-Joist Spacing", "Floor span", "shear wall design", "opening width", "jack studs design", "subfloor thickness", "header thickness", "soil capacity", "footing with stem wall", "bearing capacity", "frost depth", "anchor bolt spacing", "SEER rating", "R-value", "water efficiency", "energy consumption" ]
4
3D (press for 2D)
PCA
KMeans
1,723,410,009.9832
clustering
tievote
[ "", "" ]
05acf7d2804248419829bc1737ef03b5
sentence-transformers/all-MiniLM-L6-v2
[ "I-Joist Spacing", "Floor span", "shear wall design", "opening width", "jack studs design", "subfloor thickness", "header thickness", "soil capacity", "footing with stem wall", "bearing capacity", "frost depth", "anchor bolt spacing", "SEER rating", "R-value", "water efficiency", "energy consumption" ]
4
3D (press for 2D)
PCA
KMeans
8c9e106304e643a2b3106f0af3f0c612
mixedbread-ai/mxbai-embed-large-v1
[ "I-Joist Spacing", "Floor span", "shear wall design", "opening width", "jack studs design", "subfloor thickness", "header thickness", "soil capacity", "footing with stem wall", "bearing capacity", "frost depth", "anchor bolt spacing", "SEER rating", "R-value", "water efficiency", "energy consumption" ]
4
3D (press for 2D)
PCA
KMeans
1,723,411,483.7118
clustering
bothbadvote
[ "", "" ]
7aa15601a37b4df1aaccd3f1d40df7ec
intfloat/e5-mistral-7b-instruct
[ "Wall framing spacing", "Drywall thickness selection", "Exterior sheathing installation", "Load-bearing wall identification", "Interior partition layout", "Floor joist sizing calculation", "Subfloor material selection", "Hardwood flooring acclimation period", "Bathroom tile underlayment requirements", "Floor load capacity assessment", "Foundation depth below frost line", "Concrete slab thickness determination", "Footing size calculation", "Foundation waterproofing methods", "Soil compaction requirements", "HVAC duct sizing", "Electrical panel capacity planning", "Plumbing vent stack placement", "Water heater sizing for occupancy", "Bathroom exhaust fan CFM calculation", "Minimum bedroom size requirements", "Staircase riser and tread dimensions", "Egress window sizing for bedrooms", "Smoke detector placement guidelines", "Minimum ceiling height in living spaces" ]
5
3D (press for 2D)
PCA
KMeans
5fe74c2553e8408d8d194a8ca35f2443
voyage-multilingual-2
[ "Wall framing spacing", "Drywall thickness selection", "Exterior sheathing installation", "Load-bearing wall identification", "Interior partition layout", "Floor joist sizing calculation", "Subfloor material selection", "Hardwood flooring acclimation period", "Bathroom tile underlayment requirements", "Floor load capacity assessment", "Foundation depth below frost line", "Concrete slab thickness determination", "Footing size calculation", "Foundation waterproofing methods", "Soil compaction requirements", "HVAC duct sizing", "Electrical panel capacity planning", "Plumbing vent stack placement", "Water heater sizing for occupancy", "Bathroom exhaust fan CFM calculation", "Minimum bedroom size requirements", "Staircase riser and tread dimensions", "Egress window sizing for bedrooms", "Smoke detector placement guidelines", "Minimum ceiling height in living spaces" ]
5
3D (press for 2D)
PCA
KMeans
1,723,411,538.2593
clustering
leftvote
[ "", "" ]
11fc3c2019fc40ad94e7e384bfa06a0e
mixedbread-ai/mxbai-embed-large-v1
[ "Wall framing spacing", "Drywall thickness selection", "Exterior sheathing installation", "Load-bearing wall identification", "Interior partition layout", "Floor joist sizing calculation", "Subfloor material selection", "Hardwood flooring acclimation period", "Bathroom tile underlayment requirements", "Floor load capacity assessment", "Foundation depth below frost line", "Concrete slab thickness determination", "Footing size calculation", "Foundation waterproofing methods", "Soil compaction requirements", "HVAC duct sizing", "Electrical panel capacity planning", "Plumbing vent stack placement", "Water heater sizing for occupancy", "Bathroom exhaust fan CFM calculation", "Minimum bedroom size requirements", "Staircase riser and tread dimensions", "Egress window sizing for bedrooms", "Smoke detector placement guidelines", "Minimum ceiling height in living spaces" ]
5
3D (press for 2D)
PCA
KMeans
181b8a15881e4d2b88392dbf4ca74669
nomic-ai/nomic-embed-text-v1.5
[ "Wall framing spacing", "Drywall thickness selection", "Exterior sheathing installation", "Load-bearing wall identification", "Interior partition layout", "Floor joist sizing calculation", "Subfloor material selection", "Hardwood flooring acclimation period", "Bathroom tile underlayment requirements", "Floor load capacity assessment", "Foundation depth below frost line", "Concrete slab thickness determination", "Footing size calculation", "Foundation waterproofing methods", "Soil compaction requirements", "HVAC duct sizing", "Electrical panel capacity planning", "Plumbing vent stack placement", "Water heater sizing for occupancy", "Bathroom exhaust fan CFM calculation", "Minimum bedroom size requirements", "Staircase riser and tread dimensions", "Egress window sizing for bedrooms", "Smoke detector placement guidelines", "Minimum ceiling height in living spaces" ]
5
3D (press for 2D)
PCA
KMeans
1,734,940,950.346
clustering
rightvote
[ "", "" ]
4266516c9b9048d7b28f61e7e68fb5d5
embed-english-v3.0
[ "If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?" ]
2
3D (press for 2D)
PCA
KMeans
01d1a51939c14e3e80e64b86215d95df
intfloat/e5-mistral-7b-instruct
[ "If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?" ]
2
3D (press for 2D)
PCA
KMeans
1,734,943,387.5305
clustering
rightvote
[ "", "" ]
606549ec1b68473ab1ebf4f888a5165f
text-embedding-004
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
3D (press for 2D)
PCA
KMeans
9f402924b8d9412d9bcdb8e83a97118b
GritLM/GritLM-7B
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond", "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
3D (press for 2D)
PCA
KMeans
1,734,943,556.1141
clustering
bothbadvote
[ "", "" ]
f0aa3487cf6e4746b569d3480e38507c
text-embedding-004
[ "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
2D (press for 3D)
PCA
KMeans
1e29faf0b7364b81ab4cbc78ac47d5d2
BAAI/bge-large-en-v1.5
[ "octagon", "rectangle", "Temple of Artemis", "Colossus of Rhodes", "Statue of Zeus", "Lighthouse of Alexandria", "Hanging Gardens of Babylon", "Pyramids of Giza", "brunette", "black", "blonde", "redhead", "gray", "auburn", "white", "soccer", "basketball", "tennis", "baseball", "cricket", "ruby", "topaz", "diamond" ]
5
2D (press for 3D)
PCA
KMeans
1,722,612,753.836
clustering
tievote
[ "", "" ]
b0299402b4ef4942864589df0df92ef3
text-embedding-004
[ "violin", "flute", "guitar", "piano", "drums", "Apple", "Google", "Samsung", "LG", "Huawei", "OnePlus", "Xiaomi", "thriller", "action", "horror", "oboe", "saxophone", "bassoon", "trombone", "clarinet", "flute", "Golden Retriever", "German Shepherd", "Chihuahua" ]
5
3D (press for 2D)
PCA
KMeans
ff95785f0bf34df7abc09b6b551373de
sentence-transformers/all-MiniLM-L6-v2
[ "violin", "flute", "guitar", "piano", "drums", "Apple", "Google", "Samsung", "LG", "Huawei", "OnePlus", "Xiaomi", "thriller", "action", "horror", "oboe", "saxophone", "bassoon", "trombone", "clarinet", "flute", "Golden Retriever", "German Shepherd", "Chihuahua" ]
5
3D (press for 2D)
PCA
KMeans
1,722,612,795.3835
clustering
rightvote
[ "", "" ]
3a1048846dc4488bbee85b1bfc332a3e
jinaai/jina-embeddings-v2-base-en
[ "English", "Russian", "Mandarin", "Arabic", "linguine", "ravioli", "Go", "C++" ]
3
3D (press for 2D)
PCA
KMeans
7e2f750f3fd84deda84ba242a5cc24bf
GritLM/GritLM-7B
[ "English", "Russian", "Mandarin", "Arabic", "linguine", "ravioli", "Go", "C++" ]
3
3D (press for 2D)
PCA
KMeans
1,722,465,648.9957
clustering
rightvote
[ "", "" ]
7ffe7dac8e644f5a970652a0d40ebad6
GritLM/GritLM-7B
[ "North America", "Antarctica", "Asia", "South America", "Europe", "Australia", "Africa", "top hat", "cowboy hat", "beret", "silk", "denim", "linen", "cotton", "leather", "polyester", "wool" ]
3
3D (press for 2D)
PCA
KMeans
a410501fd5954b768b52dda204d4868d
text-embedding-3-large
[ "North America", "Antarctica", "Asia", "South America", "Europe", "Australia", "Africa", "top hat", "cowboy hat", "beret", "silk", "denim", "linen", "cotton", "leather", "polyester", "wool" ]
3
3D (press for 2D)
PCA
KMeans
1,722,504,255.7293
clustering
leftvote
[ "", "" ]
0678cdb61fbd432f8587af54f7f6b016
voyage-multilingual-2
[ "Monopoly", "Clue", "chess", "Risk", "Catan", "fedora", "beret", "top hat", "water filter", "flashlight", "sleeping bag", "compass", "backpack", "prismatic", "convex", "concave", "progressive", "bifocal", "toric", "irony", "alliteration", "personification" ]
3
3D (press for 2D)
PCA
KMeans
a0cdb38422ec41bda84f1a8ead861732
BAAI/bge-large-en-v1.5
[ "Monopoly", "Clue", "chess", "Risk", "Catan", "fedora", "beret", "top hat", "water filter", "flashlight", "sleeping bag", "compass", "backpack", "prismatic", "convex", "concave", "progressive", "bifocal", "toric", "irony", "alliteration", "personification" ]
3
3D (press for 2D)
PCA
KMeans
1,722,504,382.0493
clustering
rightvote
[ "", "" ]
36e0e85e768a49518bd2bd1b773d2956
text-embedding-3-large
[ "Oracle Cloud", "IBM Cloud", "Azure", "AWS", "Google Cloud", "pet", "travel", "disability", "auto", "home", "life", "disgust", "anger", "sadness", "joy", "rock", "reggae", "country", "classical", "electronic", "hip-hop", "penne", "fusilli" ]
5
3D (press for 2D)
PCA
KMeans
5e139fcf3d994cee84b1031dc93e14eb
jinaai/jina-embeddings-v2-base-en
[ "Oracle Cloud", "IBM Cloud", "Azure", "AWS", "Google Cloud", "pet", "travel", "disability", "auto", "home", "life", "disgust", "anger", "sadness", "joy", "rock", "reggae", "country", "classical", "electronic", "hip-hop", "penne", "fusilli" ]
5
3D (press for 2D)
PCA
KMeans
1,722,272,659.3063
clustering
leftvote
[ "", "" ]
919c97eb9cf549a1bf4e2f51c6b58fb1
intfloat/e5-mistral-7b-instruct
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
393889c596aa4ae09e16e34862121291
embed-english-v3.0
[ "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco" ]
2
3D (press for 2D)
PCA
KMeans
1,722,272,694.603
clustering
tievote
[ "", "" ]
a5d37a580c6f482fb943fa3f10c6aa6d
BAAI/bge-large-en-v1.5
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
48fc757308974384a3aeab8df4498fb0
text-embedding-004
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,722,272,781.662
clustering
tievote
[ "", "" ]
2fa935503d7444289937354e37d78a32
intfloat/multilingual-e5-large-instruct
[ "If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?" ]
2
3D (press for 2D)
PCA
KMeans
c047cd4aa1044007b410fc06159c0ff2
jinaai/jina-embeddings-v2-base-en
[ "If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?" ]
2
3D (press for 2D)
PCA
KMeans
1,723,102,070.8179
clustering
rightvote
[ "", "" ]
87b468e0cb7f43da86fe40c1fe4af5d7
jinaai/jina-embeddings-v2-base-en
[ "focaccia", "pumpernickel", "rye", "sourdough", "ciabatta", "beam", "cantilever", "suspension", "cable-stayed", "arch", "truss", "wind", "hydroelectric", "biomass", "geothermal", "solar", "tidal" ]
3
3D (press for 2D)
PCA
KMeans
8070b17cad7047f3bc8f9e025100f286
sentence-transformers/all-MiniLM-L6-v2
[ "focaccia", "pumpernickel", "rye", "sourdough", "ciabatta", "beam", "cantilever", "suspension", "cable-stayed", "arch", "truss", "wind", "hydroelectric", "biomass", "geothermal", "solar", "tidal" ]
3
3D (press for 2D)
PCA
KMeans
1,723,102,117.9081
clustering
leftvote
[ "", "" ]
8b25c5b47c67481d95ce75a8e08a7228
GritLM/GritLM-7B
[ "dairy", "crop", "livestock", "poultry", "mixed", "haiku", "ode", "sonnet", "ballad", "winter", "fall", "Subway", "Burger King", "McDonald's", "Pizza Hut", "KFC", "Taco Bell" ]
4
3D (press for 2D)
PCA
KMeans
010c8e7820b14742a4b72655cbcbafec
text-embedding-004
[ "dairy", "crop", "livestock", "poultry", "mixed", "haiku", "ode", "sonnet", "ballad", "winter", "fall", "Subway", "Burger King", "McDonald's", "Pizza Hut", "KFC", "Taco Bell" ]
4
3D (press for 2D)
PCA
KMeans
1,723,134,893.9338
clustering
tievote
[ "", "" ]
3e3c8125c1a74295b1f2003dfcd3e96b
voyage-multilingual-2
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
a3d7637cfbcc4a82a6cb2152046b5196
text-embedding-3-large
[ "Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard" ]
4
3D (press for 2D)
PCA
KMeans
1,723,136,681.2304
clustering
leftvote
[ "", "" ]
1b178d077fdc430684b789a84ebacd0a
text-embedding-3-large
[ "Indian", "Pacific", "Southern", "Arctic", "Atlantic", "rooibos", "pu-erh", "chalk", "fountain pen", "cirrus", "nimbus", "altostratus", "cumulus", "stratus", "flute", "drums" ]
5
3D (press for 2D)
PCA
KMeans
d185a0b148bd4a59b40c2774e66ec18e
mixedbread-ai/mxbai-embed-large-v1
[ "Indian", "Pacific", "Southern", "Arctic", "Atlantic", "rooibos", "pu-erh", "chalk", "fountain pen", "cirrus", "nimbus", "altostratus", "cumulus", "stratus", "flute", "drums" ]
5
3D (press for 2D)
PCA
KMeans
1,723,136,723.7632
clustering
leftvote
[ "", "" ]
4feaf1ee0a274ac8a85968a2361f8e54
sentence-transformers/all-MiniLM-L6-v2
[ "ciabatta", "brioche", "baguette", "literature", "biology", "chemistry", "history", "physics" ]
2
3D (press for 2D)
PCA
KMeans
0bd549df73be4ad68095e81f687bf038
jinaai/jina-embeddings-v2-base-en
[ "ciabatta", "brioche", "baguette", "literature", "biology", "chemistry", "history", "physics" ]
2
3D (press for 2D)
PCA
KMeans
1,723,214,645.1831
clustering
tievote
[ "", "" ]
fb881f138f0b43cba2ae08f7e3c4f4a8
intfloat/multilingual-e5-large-instruct
[ "werewolf", "phoenix", "mermaid", "centaur", "unicorn", "liberalism", "anarchism", "fascism", "Japanese", "Mexican", "Indian" ]
3
3D (press for 2D)
PCA
KMeans
0f26f47f54dd40819a948e28ece4a83e
Alibaba-NLP/gte-Qwen2-7B-instruct
[ "werewolf", "phoenix", "mermaid", "centaur", "unicorn", "liberalism", "anarchism", "fascism", "Japanese", "Mexican", "Indian" ]
3
3D (press for 2D)
PCA
KMeans
1,722,276,839.4005
clustering
leftvote
[ "", "" ]
233e8e1ecf804bf680b427d49621a321
text-embedding-004
[ "Apples", "Bananas", "Oranges", "Grapes", "Pears", "Lemons", "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron", "Carbon", "Dog", "Cat", "Hamster", "Rabbit", "Goldfish", "Parakeet" ]
3
2D (press for 3D)
PCA
KMeans
6622c39eb5a14ce284aa2ccf3b8fe135
text-embedding-3-large
[ "Apples", "Bananas", "Oranges", "Grapes", "Pears", "Lemons", "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron", "Carbon", "Dog", "Cat", "Hamster", "Rabbit", "Goldfish", "Parakeet" ]
3
2D (press for 3D)
PCA
KMeans
1,722,276,997.8264
clustering
rightvote
[ "", "" ]
bd490836af8e4370bf9ffcb7a54ba754
voyage-multilingual-2
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich", "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
3b19aa95ee4f4908bdf23aec8478568a
embed-english-v3.0
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich", "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
1,722,277,187.8827
clustering
tievote
[ "", "" ]
f8c4bf85d67f41de9b8bbfa14f7ebd1b
intfloat/e5-mistral-7b-instruct
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich", "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
1d4dc82e83524d199f681f7dd61a25f3
text-embedding-004
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich", "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
1,722,277,210.6836
clustering
rightvote
[ "", "" ]
adafc83b33cc4355aadf6fc9e10cdbcd
GritLM/GritLM-7B
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
67de54733b554dae8eb10a3fe142bde8
jinaai/jina-embeddings-v2-base-en
[ "Piano", "Electron", "Sushi", "Violin", "Proton", "Pasta", "Trumpet", "Neutron", "Steak", "Clarinet", "Quark", "Salad", "Harp", "Photon", "Soup", "Cello", "Neutrino", "Sandwich" ]
3
2D (press for 3D)
PCA
KMeans
1,722,277,499.9324
clustering
rightvote
[ "", "" ]
0c3b0361b0f14423ae0b8081f781a2ec
BAAI/bge-large-en-v1.5
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin", "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans
6522beccc4b44fffb049889a46d4ecd8
text-embedding-004
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin", "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans
1,722,277,520.8821
clustering
leftvote
[ "", "" ]
7d33a06aa1a24155b8c2128567b41440
intfloat/e5-mistral-7b-instruct
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans
4d7cdf865a6141ff9a0097f1840b007c
BAAI/bge-large-en-v1.5
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans
1,722,277,608.0973
clustering
leftvote
[ "", "" ]
b5be4399c1d3491487992d132ed1ba24
sentence-transformers/all-MiniLM-L6-v2
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans
66410239cb954ef282b1131aaf0aba1b
Salesforce/SFR-Embedding-2_R
[ "Apple", "Hammer", "Dog", "Guitar", "Banana", "Screwdriver", "Cat", "Piano", "Orange", "Wrench", "Rabbit", "Violin" ]
4
2D (press for 3D)
PCA
KMeans

This dataset contains the saved results from MTEB-Arena

Downloads last month
7,214