File size: 16,542 Bytes
e3e39ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2df99
 
 
 
 
 
0ae62f9
e3e39ce
 
7605b4f
e3e39ce
0ae62f9
e3e39ce
 
 
 
 
 
0ae62f9
e3e39ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fb9cd
 
e3e39ce
 
 
 
96fb9cd
e3e39ce
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
## Script to sanitize and split HematoxLong2023 dataset

# 1. Load modules 

pip install rdkit
pip install molvs
import pandas as pd
import numpy as np
import urllib.request
import tqdm
import rdkit
from rdkit import Chem
import molvs

standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()

#2. Download the original dataset

# Download SI Table 2 from
#.  Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches
#.  Teng-Zhi Long, Shao-Hua Shi, Shao Liu, Ai-Ping Lu, Zhao-Qian Liu, Min Li, Ting-Jun Hou*, and Dong-Sheng Cao*
#.  J. Chem. Inf. Model. 2023, 63, 1, 111–125
#.  https://doi.org/10.1021/acs.jcim.2c01088

urllib.request.urlretrieve(
    url = "https://ndownloader.figstatic.com/files/38442996",
    filename = "Long2023_SI2.xls")

Long2023 = pd.read_excel(
    io = "Long2023_SI2.xls",
    sheet_name = "all_data",
    engine = "xlrd",
    names = ['SMILES', 'Y'])

Long2023['ID'] = [f"Long2023_{i}" for i in range(len(Long2023.index))]

#3. Resolve SMILES parse error

# failed to parse smiles, looked it up in ChemSpider and found Octahydro-1H-purine-6-thiol
# (Found by conversion of search term to chemical structure (connectivity match))
# https://www.chemspider.com/Chemical-Structure.114454999.html?rid=8f8bdf21-6482-44e5-adc9-71c5aef41627
Long2023.loc[Long2023['SMILES'] == 'Sc1[nH]cnc-2[n+H]cnc1-2', 'SMILES'] = "SC1NCNC2NCNC21"

# failed to parse smiles, looked it up in Pubchem and found 2-Amino-3,7-dihydropurin-1-ium-6-thione
# https://pubchem.ncbi.nlm.nih.gov/compound/117071895
Long2023.loc[Long2023['SMILES'] == 'Sc1nc(N)nc2[n+H]c[nH]c12', 'SMILES'] = "C1=NC2=C(N1)C(=S)[NH+]=C(N2)N"

# failed to parse smiles, looked it up in ChemSpider and found gentamicin
# (Found by conversion of search term to chemical structure (connectivity match))
# The approved drug gentamicin is a complex of three closely-related aminoglycoside sulfates: C1, C1a and C2
# It's unclear from the smiles, if they used just one of the forms or the mixture of all three
# Clinically, there appears to be a wide range of compositions of C1, C1a, C2 forms (!)
# Here, we'll just use the C1 form (https://www.ebi.ac.uk/chebi/searchId.do;D579C431E9548A30AFBD88A2D05CA777?chebiId=CHEBI:27412)
Long2023.loc[Long2023['SMILES'] == 'O(C1C(O)C(OC2C(O)C([N+H2]C)[C@](O)(C)CO2)C(N)CC1N)C1C([N+H3])CCC(C([N+H2]C)C)O1', 'SMILES'] = \
     "CNC(C)[C@@H]1CC[C@@H](N)[C@H](O1)O[C@@H]1[C@@H](N)C[C@@H](N)[C@H](O[C@H]2OC[C@](C)(O)[C@H](NC)[C@H]2O)[C@H]1O"

# failed to parse smiles, looked it up in ChemSpider and found (2S)-2-Hydroxy-N-isopropyl-3-(1-naphthyloxy)-1-propanaminium
# (Found by conversion of search term to chemical structure (connectivity match))
# https://www.chemspider.com/Chemical-Structure.5296478.html?rid=129380a1-888e-48d0-b240-43646b288842
Long2023.loc[Long2023['SMILES'] == 'O(C[C@@H](O)C[N+H2]C(C)C)c1c2c(ccc1)cccc2', 'SMILES'] = \
     "O[C@@H](C[NH2+]C(C)C)COc2cccc1ccccc12"

# failed to parse smiles, looked it up in ChemSpider, removing charge and H from nitrogens
# matches Periciazine, which I think is what this compound is
# https://www.chemspider.com/Chemical-Structure.4585.html?rid=0694332f-3886-4df1-85d4-8cdb11554c3d
Long2023.loc[Long2023['SMILES'] == 'OC1CC[N+H](CCC[N+@H]2c3c(Sc4c2cccc4)ccc(C#N)c3)CC1', 'SMILES'] = \
     "c1ccc2c(c1)N(c3cc(ccc3S2)C#N)CCCN4CCC(CC4)O"

# failed to parse smiles, looked it up in ChemSpider and found idarubicin
# (Found by conversion of search term to chemical structure (connectivity match))
# Idarubicin, or 4-demethoxydaunorubicin is an anthracycline antileukemic drug.
# https://www.chemspider.com/Chemical-Structure.39117.html?rid=a418032b-d8ab-4200-9226-bcb194221cf0&page_num=0
Long2023.loc[Long2023['SMILES'] == 'O=C(C)[C@@]1(O)CC(OC2OC(C)C(O)C([N+H3])C2)c2c(O)c3C(=O)c4c(C(=O)c3c(O)c2C1)cccc4', 'SMILES'] = \
     "C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](Cc3c2c(c4c(c3O)C(=O)c5ccccc5C4=O)O)(C(=O)C)O)N)O"

# failed to parse smiles, looked it up in ChemSpider and found (2S)-5-[(6-Methoxy-8-quinolinyl)amino]-2-pentanaminium
# (Found by conversion of search term to chemical structure (full match))
# https://www.chemspider.com/Chemical-Structure.1291555.html?rid=b22e2c45-078e-48d9-8907-22deb37bed0c
Long2023.loc[Long2023['SMILES'] == 'O(C)c1cc(NCCC[C@@H]([N+H3])C)c2ncccc2c1', 'SMILES'] = "C[C@@H](CCCNc1cc(cc2c1nccc2)OC)[NH3+]"

# failed to parse smiles, looked it up in PUbchem
# found diethyl-[2-[[5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carbonyl]amino]ethyl]azanium
# https://pubchem.ncbi.nlm.nih.gov/compound/40469377
Long2023.loc[Long2023['SMILES'] == 'Fc1cc2/C(=C/c3c(C)c(C(=O)NCC[N+H](CC)CC)c(C)[nH]3)/C(=O)Nc2cc1', 'SMILES'] = \
   "CC[NH+](CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C"

# failed to parse smiles, looked it up in ChemSpider
# found 1-Methyl-4-{4-[(4-methyl-3-{[4-(3-pyridinyl)-2-pyrimidinyl]amino}phenyl)carbamoyl]benzyl}piperazin-1-ium
# (Found by conversion of search term to chemical structure (full match))
# https://www.chemspider.com/Chemical-Structure.13082883.html?rid=8baa4568-3947-473e-9fdc-8872f411694c#synonymsTab
Long2023.loc[Long2023['SMILES'] == 'O=C([N+H2]c1cc(Nc2nc(-c3cnccc3)ccn2)c(C)cc1)c1ccc(CN2CCN(C)CC2)cc1', 'SMILES'] = \
    "Cc1ccc(cc1Nc2nccc(n2)c3cccnc3)NC(=O)c4ccc(cc4)CN5CC[NH+](CC5)C"

# failed to parse smiles, looked it up in ChemSpider and found 6-Chloro-9-{[(2S)-5-(diethylammonio)-2-pentanyl]amino}-2-methoxyacridinium
# (Found by conversion of search term to chemical structure (full match))
# https://www.chemspider.com/Chemical-Structure.5408834.html?rid=c1cdd9c2-d48b-4cd4-945d-606bf2bff1ee
Long2023.loc[Long2023['SMILES'] == 'Clc1cc2[n+H]c3c(c(N[C@H](CCC[N+H](CC)CC)C)c2cc1)cc(OC)cc3', 'SMILES'] = \
    "Clc3ccc2c(c1cc(OC)ccc1[nH+]c2c3)N[C@@H](C)CCC[NH+](CC)CC"

# failed to parse smiles, looked it up in ChemSpider, removing charge
# found Carvedilol
# (Found by conversion of search term to chemical structure (connectivity match))
# Carvedilol is a beta-blocker medication, that may be prescribed for treating high blood pressure and chronic heart failure with reduced ejection fraction.
# https://www.chemspider.com/Chemical-Structure.2487.html?rid=f8358443-8c32-4e5f-b1d8-47ad13ea8a16&page_num=0
Long2023.loc[Long2023['SMILES'] == 'O(CC[N+H2]C[C@H](O)COc1c-2c([N+H2]c3c-2cccc3)ccc1)c1c(OC)cccc1', 'SMILES'] = \
    "COc1ccccc1OCCNCC(COc2cccc3c2c4ccccc4[nH]3)O"

# failed to parse smiles, looked it up in ChemSpider, found (2S)-1-(2,6-Dimethylphenoxy)-2-propanaminium
# (Found by conversion of search term to chemical structure (full match))
# https://www.chemspider.com/Chemical-Structure.5296573.html?rid=c8c0121e-fad3-4458-8c64-a0baa3e18358
Long2023.loc[Long2023['SMILES'] == 'O(C[C@@H]([N+H3])C)c1c(C)cccc1C', 'SMILES'] = \
    "O(c1c(cccc1C)C)C[C@@H]([NH3+])C"

# failed to parse smiles, looked it up in ChemSpider and found 4-{2-[(5-Cyano-5,5-diphenylpentyl)(methyl)amino]ethyl}-4-methylmorpholin-4-ium
# (Found by conversion of search term to chemical structure (connectivity match))
# https://www.chemspider.com/Chemical-Structure.2310136.html?rid=ce2b48f6-04d6-4df3-ad71-b6507906c7cb
Long2023.loc[Long2023['SMILES'] == '[N+@H](CCCCC(C#N)(c1ccccc1)c1ccccc1)(CC[N+]1(C)CCOCC1)C', 'SMILES'] = \
    "CN(CCCCC(C#N)(c1ccccc1)c2ccccc2)CC[N+]3(CCOCC3)C"

# failed to parse smiles, looked it up in ChemSpider
# found (5E)-3-[(2R,6S)-2,6-Dimethyl-1-piperidinyl]-5-[(4-methoxybenzoyl)imino]-4,5-dihydro-1,2,3-oxadiazol-3-ium-4-ide
# (Found by conversion of search term to chemical structure (full match))
# https://www.chemspider.com/Chemical-Structure.28530638.html?rid=b44dbe3c-24f1-4303-8deb-82b879b7f0e0
Long2023.loc[Long2023['SMILES'] == 'O=C(/N=C1/ON=[N+](N2[C@@H](C)CCC[C@H]2C)[C-H]/1)c1ccc(OC)cc1', 'SMILES'] = \
    "C[C@@H]1CCC[C@@H](N1[n+]2[cH-]/c(=N\C(=O)c3ccc(cc3)OC)/on2)C"

# failed to parse smiles, looked it up in Pubchem
# found ((R)-[(2S)-7-ethenyl-1-azabicyclo[2.2.1]heptan-2-yl]-(6-methoxyquinolin-4-yl)methanol
# https://pubchem.ncbi.nlm.nih.gov/compound/139247817
Long2023.loc[Long2023['SMILES'] == 'O(C)c1cc2c([C@@H](O)[C@@H]3[N+@H]4[C@@H](C=C)[C@H](C3)CC4)ccnc2cc1', 'SMILES'] = \
    "COC1=CC2=C(C=CN=C2C=C1)C(C3CC4CCN3C4C=C)O"

#4. Sanitize with MolVS and print problems

Long2023['X'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in Long2023['SMILES']]

problems = []
for index, row in tqdm.tqdm(Long2023.iterrows()):
    result = molvs.validate_smiles(row['X'])
    if len(result) == 0:
        continue
    problems.append( (row['ID'], result) )

#   Most are because it includes the salt form and/or it is not neutralized
for id, alert in problems:
    print(f"ID: {id}, problem: {alert[0]}")

# Result interpretation
#  - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed
#  It doesn't mean that the molecules are bad, it just means that normalization failed 
#  - () is present: The error message is not about a salt, not about a fragment, 
#  It is showing there is a molecule () (ex) Benzene is present

#5. Select columns and rename the dataset

Long2023.rename(columns={'X': 'new SMILES', 'Y': 'Label'}, inplace=True)
HematoxLong2023 = Long2023[['new SMILES', 'Label']]

#6. Import modules to split the dataset

import sys
from rdkit import DataStructs
from rdkit.Chem import AllChem as Chem
from rdkit.Chem import PandasTools   

#7. Split the dataset into test and train

class MolecularFingerprint:
    def __init__(self, fingerprint):
        self.fingerprint = fingerprint

    def __str__(self):
        return self.fingerprint.__str__()

def compute_fingerprint(molecule):
    try:
        fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024)
        result = np.zeros(len(fingerprint), np.int32)
        DataStructs.ConvertToNumpyArray(fingerprint, result)
        return MolecularFingerprint(result)
    except:
        print("Fingerprints for a structure cannot be calculated")
        return None

def tanimoto_distances_yield(fingerprints, num_fingerprints):
    for i in range(1, num_fingerprints):
        yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]

def cluster_data(fingerprints, num_points, distance_threshold, reordering=False):
    nbr_lists = [None] * num_points
    for i in range(num_points):
        nbr_lists[i] = []

    dist_fun = tanimoto_distances_yield(fingerprints, num_points)
    for i in range(1, num_points):
        dists = next(dist_fun)

        for j in range(i):
            dij = dists[j]
            if dij <= distance_threshold:
                nbr_lists[i].append(j)
                nbr_lists[j].append(i)

    t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)]
    t_lists.sort(reverse=True)

    res = []
    seen = [0] * num_points
    while t_lists:
        _, idx = t_lists.pop(0)
        if seen[idx]:
            continue
        t_res = [idx]
        for nbr in nbr_lists[idx]:
            if not seen[nbr]:
                t_res.append(nbr)
                seen[nbr] = 1
        if reordering:
            nbr_nbr = [nbr_lists[t] for t in t_res]
            nbr_nbr = frozenset().union(*nbr_nbr)
            for x, y in enumerate(t_lists):
                y1 = y[1]
                if seen[y1] or (y1 not in nbr_nbr):
                    continue
                nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res)
                t_lists[x] = (len(nbr_lists[y1]), y1)
            t_lists.sort(reverse=True)
        res.append(tuple(t_res))
    return tuple(res)

def cluster_fingerprints(fingerprints, method="Auto"):
    num_fingerprints = len(fingerprints)

    if method == "Auto":
        method = "TB" if num_fingerprints >= 10000 else "Hierarchy"

    if method == "TB":
        cutoff = 0.56
        print("Butina clustering is selected. Dataset size is:", num_fingerprints)
        clusters = cluster_data(fingerprints, num_fingerprints, cutoff)

    elif method == "Hierarchy":
        import scipy.spatial.distance as ssd
        from scipy.cluster import hierarchy

        print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)

        av_cluster_size = 8
        dists = []

        for i in range(0, num_fingerprints):
            sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
            dists.append([1 - x for x in sims])

        dis_array = ssd.squareform(dists)
        Z = hierarchy.linkage(dis_array)
        average_cluster_size = av_cluster_size
        cluster_amount = int(num_fingerprints / average_cluster_size)
        clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)

        clusters = list(clusters.transpose()[0])
        cs = []
        for i in range(max(clusters) + 1):
            cs.append([])

        for i in range(len(clusters)):
            cs[clusters[i]].append(i)
        return cs

def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
    try:
        import math

        smiles_column_name = dataframe.columns[smiles_col_index]
        molecule = 'molecule'
        fingerprint = 'fingerprint'
        group = 'group'
        testing = 'testing'

        try:
            PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule)
        except:
            print("Exception occurred during molecule generation...")

        dataframe = dataframe.loc[dataframe[molecule].notnull()]
        dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]]
        dataframe = dataframe.loc[dataframe[fingerprint].notnull()]

        fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]]
        clusters = cluster_fingerprints(fingerprints, method=cluster_method)

        dataframe.drop([molecule, fingerprint], axis=1, inplace=True)

        last_training_index = int(math.ceil(len(dataframe) * fraction_to_train))
        clustered = None
        cluster_no = 0
        mol_count = 0

        for cluster in clusters:
            cluster_no = cluster_no + 1
            try:
                one_cluster = dataframe.iloc[list(cluster)].copy()
            except:
                print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster)))
                continue

            one_cluster.loc[:, 'ClusterNo'] = cluster_no
            one_cluster.loc[:, 'MolCount'] = len(cluster)

            if (mol_count < last_training_index) or (cluster_no < 2):
                one_cluster.loc[:, group] = 'training'
            else:
                one_cluster.loc[:, group] = testing

            mol_count += len(cluster)
            clustered = pd.concat([clustered, one_cluster], ignore_index=True)

        if split_for_exact_fraction:
            print("Adjusting test to train ratio. It may split one cluster")
            clustered.loc[last_training_index + 1:, group] = testing

        print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" %
              (len(clustered.loc[clustered[group] != testing]),
               len(clustered.loc[clustered[group] == testing]),
               len(clustered.loc[clustered[group] == testing]) / len(clustered)))

    except KeyboardInterrupt:
        print("Clustering interrupted.")

    return clustered


def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"):
  return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method)

def split_df_into_train_and_test_sets(df):
    df['group'] = df['group'].str.replace(' ', '_')
    df['group'] = df['group'].str.lower()
    train = df[df['group'] == 'training']
    test = df[df['group'] == 'testing']
    return train, test

# 8. Test and train datasets have been made

smiles_index = 0  # Because smiles is in the first column
realistic = realistic_split(HematoxLong2023.copy(), smiles_index, 0.75, split_for_exact_frac=True, cluster_method="Auto")
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)

#9. Select columns and name the datasets

selected_columns = realistic_train[['new SMILES', 'Label']]
selected_columns.to_csv("HematoxLong2023_train.csv", index=False)
selected_columns = realistic_test[['new SMILES', 'Label']]
selected_columns.to_csv("HematoxLong2023_test.csv", index=False)