haneulpark commited on
Commit
0ae62f9
·
verified ·
1 Parent(s): a9367ea

Update Processing Script.py

Browse files
Files changed (1) hide show
  1. Processing Script.py +4 -61
Processing Script.py CHANGED
@@ -141,63 +141,6 @@ Long2023['X'] = [ \
141
  smiles))))
142
  for smiles in Long2023['SMILES']]
143
 
144
- Long2023['X'] = [Chem.MolFromSmiles(smiles) for smiles in Long2023['X']]
145
- for mol in Long2023['X']:
146
- Chem.Kekulize(mol)
147
-
148
- Long2023['X'] = [Chem.MolToSmiles(mol, kekuleSmiles=True) for mol in Long2023['X']]
149
-
150
- problems = []
151
- for index, row in tqdm.tqdm(Long2023.iterrows()):
152
- result = molvs.validate_smiles(row['X'])
153
- if len(result) == 0:
154
- continue
155
- problems.append( (row['ID'], result) )
156
-
157
- # Most are because it includes the salt form and/or it is not neutralized
158
- for id, alert in problems:
159
- print(f"ID: {id}, problem: {alert[0]}")
160
-
161
- for index, row in tqdm.tqdm(Long2023.iterrows()):
162
- mol = Chem.MolFromSmiles(row['X'])
163
- Chem.Kekulize(mol) # Attempt to kekulize the molecule
164
- kekulized_smiles = Chem.MolToSmiles(mol, kekuleSmiles=True) # Get the kekulized SMILES
165
- if row['X'] != kekulized_smiles:
166
- print(f"Molecule with ID {row['ID']} could not be kekulized.")
167
-
168
- #5. Resolve kekulization error
169
-
170
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)C2=C3C(=CC=CC3=CC=C2)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=CC=CC3=CC=CC(=C23)C1=O'
171
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)NCCCl)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NCCCl)=CC3=CC=C2)C1=O'
172
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC=O)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC=O)=CC3=CC=C2)C1=O'
173
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)CCCCl)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)CCCCl)=CC3=CC=C2)C1=O'
174
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)C(Cl)(Cl)Cl)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)C(Cl)(Cl)Cl)=CC3=CC=C2)C1=O'
175
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc([N+](=O)[O-])cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC([N+](=O)[O-])=CC3=CC=C2)C1=O'
176
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(N)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(N)=CC3=CC=C2)C1=O'
177
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Nc4ccc(Cl)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC4=CC=C(Cl)C=C4)=CC3=CC=C2)C1=O'
178
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Nc4ccc(C#N)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC4=CC=C(C#N)C=C4)=CC3=CC=C2)C1=O'
179
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=S)Nc4ccc(Cl)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=S)NC4=CC=C(Cl)C=C4)=CC3=CC=C2)C1=O'
180
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(/N=C/c4ccc(C#N)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(/N=C/C4=CC=C(C#N)C=C4)=CC3=CC=C2)C1=O'
181
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=S)Nc4ccc(C#N)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=S)NC4=CC=C(C#N)C=C4)=CC3=CC=C2)C1=O'
182
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NCc4ccc5c(c4)OCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NCC4=CC=C5OCOC5=C4)=CC3=CC=C2)C1=O'
183
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)NC(=O)c4ccccc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC(=O)C4=CC=CC=C4)=CC3=CC=C2)C1=O'
184
- Long2023.loc[Long2023['X'] == 'C[C@H]1Oc2cc(cnc2N)-c2c(nn(C)c2C#N)CN(C)C(=O)c2ccc(F)cc21', 'X'] = 'C[C@H]1OC2=C(N)N=CC(=C2)C2=C(C#N)N(C)N=C2CN(C)C(=O)C2=CC=C(F)C=C21'
185
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Nc4cc5c6c(cccc6c4)C(=O)N(CCN(C)C)C5=O)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC4=CC5=C6C(=CC=CC6=C4)C(=O)N(CCN(C)C)C5=O)=CC3=CC=C2)C1=O'
186
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NCc4ccc5c(c4)OCCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NCC4=CC=C5OCCOC5=C4)=CC3=CC=C2)C1=O'
187
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)c4ccccc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)C4=CC=CC=C4)=CC3=CC=C2)C1=O'
188
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)NC(=O)CCl)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC(=O)CCl)=CC3=CC=C2)C1=O'
189
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)C(F)(F)F)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)C(F)(F)F)=CC3=CC=C2)C1=O'
190
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Nc4ccc(OC(F)(F)F)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC4=CC=C(OC(F)(F)F)C=C4)=CC3=CC=C2)C1=O'
191
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(/N=C/c4cc(O)ccc4O)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(/N=C/C4=CC(O)=CC=C4O)=CC3=CC=C2)C1=O'
192
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=S)Nc4ccc(OC(F)(F)F)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=S)NC4=CC=C(OC(F)(F)F)C=C4)=CC3=CC=C2)C1=O'
193
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NCc4cc5c(cc4[N+](=O)[O-])OCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NCC4=CC5=C(C=C4[N+](=O)[O-])OCO5)=CC3=CC=C2)C1=O'
194
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Cc4ccc(Cl)cc4)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)CC4=CC=C(Cl)C=C4)=CC3=CC=C2)C1=O'
195
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(/N=C/c4cc5c(cc4[N+](=O)[O-])OCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(/N=C/C4=CC5=C(C=C4[N+](=O)[O-])OCO5)=CC3=CC=C2)C1=O'
196
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(/N=C/c4ccc5c(c4)OCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(/N=C/C4=CC=C5OCOC5=C4)=CC3=CC=C2)C1=O'
197
- Long2023.loc[Long2023['X'] == 'CN(C)CCN1C(=O)c2cccc3cc(NC(=O)Nc4ccc5c(c4)OCO5)cc(c23)C1=O', 'X'] = 'CN(C)CCN1C(=O)C2=C3C(=CC(NC(=O)NC4=CC=C5OCOC5=C4)=CC3=CC=C2)C1=O'
198
-
199
- #6. Print problems again to check if the errors have been resolved
200
-
201
  problems = []
202
  for index, row in tqdm.tqdm(Long2023.iterrows()):
203
  result = molvs.validate_smiles(row['X'])
@@ -209,19 +152,19 @@ for index, row in tqdm.tqdm(Long2023.iterrows()):
209
  for id, alert in problems:
210
  print(f"ID: {id}, problem: {alert[0]}")
211
 
212
- #7. Select columns and rename the dataset
213
 
214
  Long2023.rename(columns={'X': 'new SMILES', 'Y': 'Label'}, inplace=True)
215
  Long2023[['new SMILES', 'Label']].to_csv('Long2023.csv', index=False)
216
 
217
- #8. Import modules to split the dataset
218
 
219
  import sys
220
  from rdkit import DataStructs
221
  from rdkit.Chem import AllChem as Chem
222
  from rdkit.Chem import PandasTools
223
 
224
- #9. Split the dataset into test and train
225
 
226
  class MolecularFingerprint:
227
  def __init__(self, fingerprint):
@@ -403,7 +346,7 @@ smiles_index = 0 # Because smiles is in the first column
403
  realistic = realistic_split(HematoxLong2023.copy(), smiles_index, 0.75, split_for_exact_frac=True, cluster_method="Auto")
404
  realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
405
 
406
- #10. Test and train datasets have been made
407
 
408
  selected_columns = realistic_train[['new SMILES', 'Label']]
409
  selected_columns.to_csv("HematoxLong2023_train.csv", index=False)
 
141
  smiles))))
142
  for smiles in Long2023['SMILES']]
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  problems = []
145
  for index, row in tqdm.tqdm(Long2023.iterrows()):
146
  result = molvs.validate_smiles(row['X'])
 
152
  for id, alert in problems:
153
  print(f"ID: {id}, problem: {alert[0]}")
154
 
155
+ #5. Select columns and rename the dataset
156
 
157
  Long2023.rename(columns={'X': 'new SMILES', 'Y': 'Label'}, inplace=True)
158
  Long2023[['new SMILES', 'Label']].to_csv('Long2023.csv', index=False)
159
 
160
+ #6. Import modules to split the dataset
161
 
162
  import sys
163
  from rdkit import DataStructs
164
  from rdkit.Chem import AllChem as Chem
165
  from rdkit.Chem import PandasTools
166
 
167
+ #7. Split the dataset into test and train
168
 
169
  class MolecularFingerprint:
170
  def __init__(self, fingerprint):
 
346
  realistic = realistic_split(HematoxLong2023.copy(), smiles_index, 0.75, split_for_exact_frac=True, cluster_method="Auto")
347
  realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
348
 
349
+ #8. Test and train datasets have been made
350
 
351
  selected_columns = realistic_train[['new SMILES', 'Label']]
352
  selected_columns.to_csv("HematoxLong2023_train.csv", index=False)