|
import warnings
|
|
import hydra
|
|
import os
|
|
from config.config import cs
|
|
from omegaconf import DictConfig
|
|
warnings.filterwarnings('ignore')
|
|
from collections import Counter
|
|
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
from torch.utils.data import DataLoader
|
|
from torchtext.vocab import vocab
|
|
import torchtext.transforms as T
|
|
|
|
class smi_Dataset(Dataset):
|
|
def __init__(self, src, tgt):
|
|
super().__init__()
|
|
self.src = src
|
|
self.tgt = tgt
|
|
|
|
def __getitem__(self, i):
|
|
src = self.src[i]
|
|
tgt = self.tgt[i]
|
|
return src, tgt
|
|
|
|
def __len__(self):
|
|
return len(self.src)
|
|
|
|
def make_smi_list(path, counter):
|
|
smi_list = []
|
|
max_length = 0
|
|
with open(path,'r') as f:
|
|
for line in f:
|
|
smi_list.append(line.rstrip().split(' '))
|
|
for i in smi_list:
|
|
counter.update(i)
|
|
if len(i) > max_length:
|
|
max_length = len(i)
|
|
return smi_list, max_length
|
|
|
|
|
|
def make_counter(src_train_path, tgt_train_path, src_valid_path, tgt_valid_path) -> dict:
|
|
src_counter = Counter()
|
|
tgt_counter = Counter()
|
|
src_train, max_src_train = make_smi_list(src_train_path, src_counter)
|
|
tgt_train, max_tgt_train = make_smi_list(tgt_train_path, tgt_counter)
|
|
src_valid, max_src_valid = make_smi_list(src_valid_path, src_counter)
|
|
tgt_valid, max_tgt_valid = make_smi_list(tgt_valid_path, tgt_counter)
|
|
|
|
src_max_length = max([max_src_train, max_src_valid])
|
|
tgt_max_length = max([max_tgt_train, max_tgt_valid])
|
|
tgt_max_length = tgt_max_length+2
|
|
|
|
datasets = []
|
|
datasets.append(src_train)
|
|
datasets.append(tgt_train)
|
|
datasets.append(src_valid)
|
|
datasets.append(tgt_valid)
|
|
|
|
return {'src_counter': src_counter, 'tgt_counter': tgt_counter,
|
|
'src_max_len': src_max_length, 'tgt_max_len': tgt_max_length, 'datasets': datasets}
|
|
|
|
def make_transforms(data_dict, make_vocab: bool = False, vocab_load_path=None):
|
|
if make_vocab == False and vocab_load_path is None:
|
|
raise ValueError('The make_transforms function is not being passed the vocab_load_path.')
|
|
if make_vocab:
|
|
counter = data_dict['src_counter'] + data_dict['tgt_counter']
|
|
v = vocab(counter, min_freq=5, specials=(['<unk>', '<pad>', '<bos>', '<eos>']))
|
|
v.set_default_index(v['<unk>'])
|
|
else:
|
|
v = torch.load(vocab_load_path)
|
|
|
|
src_transforms = T.Sequential(
|
|
T.VocabTransform(v),
|
|
T.ToTensor(padding_value=v['<pad>']),
|
|
T.PadTransform(max_length=data_dict['src_max_len'], pad_value=v['<pad>'])
|
|
)
|
|
|
|
tgt_transforms = T.Sequential(
|
|
T.VocabTransform(v),
|
|
T.AddToken(token=v['<bos>'], begin=True),
|
|
T.AddToken(token=v['<eos>'], begin=False),
|
|
T.ToTensor(padding_value=v['<pad>']),
|
|
T.PadTransform(max_length=data_dict['tgt_max_len'],pad_value=v['<pad>'])
|
|
)
|
|
|
|
return src_transforms, tgt_transforms, v
|
|
|
|
|
|
def make_dataloader(datasets, src_transforms, tgt_transforms, batch_size):
|
|
'''
|
|
datasets: output of make_counter()
|
|
transforms: output of make_vocab()
|
|
'''
|
|
|
|
src_train = datasets[0]
|
|
tgt_train = datasets[1]
|
|
src_valid = datasets[2]
|
|
tgt_valid = datasets[3]
|
|
|
|
src_train, src_valid = src_transforms(src_train), src_transforms(src_valid)
|
|
tgt_train, tgt_valid = tgt_transforms(tgt_train), tgt_transforms(tgt_valid)
|
|
|
|
train_dataset = smi_Dataset(src=src_train, tgt=tgt_train)
|
|
valid_dataset = smi_Dataset(src=src_valid, tgt=tgt_valid)
|
|
|
|
train_dataloader = DataLoader(dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
drop_last=True,
|
|
shuffle=True,
|
|
num_workers=2,
|
|
pin_memory=True
|
|
)
|
|
valid_dataloader = DataLoader(dataset=valid_dataset,
|
|
batch_size=batch_size,
|
|
drop_last=False,
|
|
shuffle=False,
|
|
num_workers=2,
|
|
pin_memory=True
|
|
)
|
|
|
|
return train_dataloader, valid_dataloader
|
|
|
|
|
|
@hydra.main(config_path=None, config_name='config', version_base=None)
|
|
def main(cfg: DictConfig):
|
|
|
|
print('Saving vocabulary...')
|
|
src_train_path = hydra.utils.get_original_cwd()+cfg['prep']['src_train']
|
|
tgt_train_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_train']
|
|
src_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['src_valid']
|
|
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_valid']
|
|
|
|
data_dict= make_counter(src_train_path=src_valid_path,
|
|
tgt_train_path=tgt_train_path,
|
|
src_valid_path=src_train_path,
|
|
tgt_valid_path=tgt_valid_path)
|
|
|
|
_, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
|
|
torch.save(v, hydra.utils.get_original_cwd()+'/vocab.pth')
|
|
print('done.')
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|
|
|
|
|
|
|