File size: 5,418 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import warnings
import hydra
import os
from config.config import cs
from omegaconf import DictConfig
warnings.filterwarnings('ignore')
from collections import Counter

import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchtext.vocab import vocab
import torchtext.transforms as T

class smi_Dataset(Dataset):
    def __init__(self, src, tgt):
        super().__init__()
        self.src = src
        self.tgt = tgt
        
    def __getitem__(self, i):
        src = self.src[i]
        tgt = self.tgt[i]
        return src, tgt
    
    def __len__(self):
        return len(self.src)

def make_smi_list(path, counter):
    smi_list = []
    max_length = 0
    with open(path,'r') as f:
        for line in f:
            smi_list.append(line.rstrip().split(' '))
        for i in smi_list:
            counter.update(i)
            if len(i) > max_length:
                max_length = len(i)
    return smi_list, max_length
    

def make_counter(src_train_path, tgt_train_path, src_valid_path, tgt_valid_path) -> dict:
    src_counter = Counter()
    tgt_counter = Counter()
    src_train, max_src_train = make_smi_list(src_train_path, src_counter)
    tgt_train, max_tgt_train = make_smi_list(tgt_train_path, tgt_counter)
    src_valid, max_src_valid = make_smi_list(src_valid_path, src_counter)
    tgt_valid, max_tgt_valid = make_smi_list(tgt_valid_path, tgt_counter)
    
    src_max_length = max([max_src_train, max_src_valid])
    tgt_max_length = max([max_tgt_train, max_tgt_valid])
    tgt_max_length = tgt_max_length+2 # bosとeosの分を加算
    
    datasets = []
    datasets.append(src_train)
    datasets.append(tgt_train)
    datasets.append(src_valid)
    datasets.append(tgt_valid)
    
    return {'src_counter': src_counter, 'tgt_counter': tgt_counter,
            'src_max_len': src_max_length, 'tgt_max_len': tgt_max_length, 'datasets': datasets}

def make_transforms(data_dict, make_vocab: bool = False, vocab_load_path=None):
    if make_vocab == False and vocab_load_path is None:
        raise ValueError('The make_transforms function is not being passed the vocab_load_path.')
    if make_vocab:
        counter = data_dict['src_counter'] + data_dict['tgt_counter']
        v = vocab(counter, min_freq=5, specials=(['<unk>', '<pad>', '<bos>', '<eos>']))
        v.set_default_index(v['<unk>'])
    else:
        v = torch.load(vocab_load_path)
    
    src_transforms = T.Sequential(
        T.VocabTransform(v),
        T.ToTensor(padding_value=v['<pad>']),
        T.PadTransform(max_length=data_dict['src_max_len'], pad_value=v['<pad>']) # srcはbosとeosが不要
        )
    
    tgt_transforms = T.Sequential(
        T.VocabTransform(v),
        T.AddToken(token=v['<bos>'], begin=True),
        T.AddToken(token=v['<eos>'], begin=False),
        T.ToTensor(padding_value=v['<pad>']),
        T.PadTransform(max_length=data_dict['tgt_max_len'],pad_value=v['<pad>'])
        )
    
    return src_transforms, tgt_transforms, v
    

def make_dataloader(datasets, src_transforms, tgt_transforms, batch_size):
    '''

    datasets: output of make_counter()

    transforms: output of make_vocab()

    '''
    
    src_train = datasets[0]
    tgt_train = datasets[1]
    src_valid = datasets[2]
    tgt_valid = datasets[3]
    
    src_train, src_valid = src_transforms(src_train), src_transforms(src_valid)
    tgt_train, tgt_valid = tgt_transforms(tgt_train), tgt_transforms(tgt_valid)
    
    train_dataset = smi_Dataset(src=src_train, tgt=tgt_train)
    valid_dataset = smi_Dataset(src=src_valid, tgt=tgt_valid)

    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=batch_size,
                                  drop_last=True,
                                  shuffle=True,
                                  num_workers=2,
                                  pin_memory=True
                                  )
    valid_dataloader = DataLoader(dataset=valid_dataset,
                                  batch_size=batch_size,
                                  drop_last=False,
                                  shuffle=False,
                                  num_workers=2,
                                  pin_memory=True
                                  )

    return train_dataloader, valid_dataloader
    

@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
    # Loading data
    print('Saving vocabulary...')
    src_train_path = hydra.utils.get_original_cwd()+cfg['prep']['src_train']
    tgt_train_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_train']
    src_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['src_valid']
    tgt_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_valid']
    
    data_dict= make_counter(src_train_path=src_valid_path,
                            tgt_train_path=tgt_train_path,
                            src_valid_path=src_train_path,
                            tgt_valid_path=tgt_valid_path)
    
    _, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
    torch.save(v, hydra.utils.get_original_cwd()+'/vocab.pth')
    print('done.')

if __name__ == '__main__':
    main()