Tracer / data /scripts /beam_search.py
introvoyz041's picture
Migrated from GitHub
e0d0d76 verified
import os
import operator
import itertools
import re
import json
import hydra
from tqdm.auto import tqdm
from config.config import cs
from omegaconf import DictConfig
import rdkit.Chem as Chem
from rdkit.Chem import AllChem
import torch
import torchtext.vocab.vocab as Vocab
import torch.nn.functional as F
from Model.Transformer.model import Transformer
from scripts.preprocess import make_counter ,make_transforms
from Utils.utils import smi_tokenizer
from Model.GCN import network
from Model.GCN.utils import template_prediction, check_templates
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('./data/label_template.json') as f:
r_dict = json.load(f)
class BeamSearchNode(object):
def __init__(self, previousNode, decoder_input, logProb, length):
self.prevNode = previousNode
self.dec_in = decoder_input
self.logp = logProb
self.leng = length
def eval(self, alpha=0.6):
return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha)
def check_templates(indices, input_smi):
matched_indices = []
input_smi = input_smi.replace(' ','')
molecule = Chem.MolFromSmiles(input_smi)
for i in indices:
idx = str(i.item())
rsmi = r_dict[idx]
rxn = AllChem.ReactionFromSmarts(rsmi)
reactants = rxn.GetReactants()
flag = False
for reactant in reactants:
if molecule.HasSubstructMatch(reactant):
flag = True
if flag == True:
matched_indices.append(f'[{i.item()}]')
return matched_indices # ['[0]', '[123]', ... '[742]']
def beam_decode(v:Vocab, model=None, input_tokens=None, template_idx=None,
device=None, inf_max_len=None, beam_width=10, nbest=5, Temp=None,
beam_templates:list=None):
SOS_token = v['<bos>']
EOS_token = v['<eos>']
if template_idx is not None:
template_idx = re.sub(r'\D', '', template_idx)
if template_idx not in beam_templates:
beam_width = 5
nbest = 1
# A batch of one input for Encoder
encoder_input = input_tokens
# Generate encoded features
with torch.no_grad():
encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1
encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
# Start with the start of the sentence token
decoder_input = torch.tensor([[SOS_token]]) # (1,1)
# Starting node
counter = itertools.count()
node = BeamSearchNode(previousNode=None,
decoder_input=decoder_input,
logProb=0, length=0)
with torch.no_grad():
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device)
logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # (1, vocab)
tmp_beam_width = min(beam_width, decoder_output.size(1))
log_prob, indices = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,)
nextnodes = []
for new_k in range(tmp_beam_width):
decoded_t = indices[0][new_k].view(1, -1)
log_p = log_prob[0][new_k].item()
next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq)
nn = BeamSearchNode(previousNode=node,
decoder_input=next_decoder_input,
logProb=node.logp + log_p,
length=node.leng + 1)
score = -nn.eval()
count = next(counter)
nextnodes.append((score, count, nn))
# start beam search
for i in range(inf_max_len - 1):
# fetch the best node
if i == 0:
current_nodes = sorted(nextnodes)[:tmp_beam_width]
else:
current_nodes = sorted(nextnodes)[:beam_width]
nextnodes=[]
# current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,)
scores, counts, nodes, decoder_inputs = [], [], [], []
for score, count, node in current_nodes:
if node.dec_in[0][-1].item() == EOS_token:
nextnodes.append((score, count, node))
else:
scores.append(score)
counts.append(count)
nodes.append(node)
decoder_inputs.append(node.dec_in)
if not bool(decoder_inputs):
break
decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq)
# adjust batch_size
enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1)
mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1)
with torch.no_grad():
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device)
logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask)
logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab)
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # extract log_softmax of last token
# decoder_output.shape = (batch, vocab)
for beam, score in enumerate(scores):
for token in range(EOS_token, decoder_output.size(-1)): # remove unk, pad, bosは最初から捨てる
decoded_t = torch.tensor([[token]])
log_p = decoder_output[beam, token].item()
next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1)
node = BeamSearchNode(previousNode=nodes[beam],
decoder_input=next_decoder_input,
logProb=nodes[beam].logp + log_p,
length=nodes[beam].leng + 1)
score = -node.eval()
count = next(counter)
nextnodes.append((score, count, node))
outputs = []
for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]:
# endnodes = [(score, node), (score, node)...]
output = n.dec_in.squeeze(0).tolist()[1:-1] # remove bos and eos
output = v.lookup_tokens(output)
output = ''.join(output)
outputs.append(output)
return outputs
def greedy_translate(v:Vocab, model=None, input_tokens=None, device=None, inf_max_len=None):
'''
in:
input_tokens: (seq, batch)
out:
outputs: list of SMILES(str).
'''
SOS_token = v['<bos>']
EOS_token = v['<eos>']
# A batch of one input for Encoder
encoder_input = input_tokens.permute(1, 0) # (batch,seq) -> (seq, batch)
# Generate encoded features
with torch.no_grad():
enc_out, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
# Start with the SOS token
dec_inp = torch.tensor([[SOS_token]]).expand(1, encoder_input.size(1)).to(device) # (1, batch)
EOS_dic = {i:False for i in range(encoder_input.size(1))}
for i in range(inf_max_len - 1):
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(dec_inp.size(0)).to(device)
logits = model.decode(memory=enc_out, tgt=dec_inp, tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
dec_out = F.softmax(logits[-1, :, :], dim=1) # extract softmax of last token, (batch, vocab)
next_items = dec_out.topk(1)[1].permute(1, 0) # (seq, batch) -> (batch, seq)
EOS_indices = (next_items == EOS_token)
# update EOS_dic
for j, EOS in enumerate(EOS_indices[0]):
if EOS:
EOS_dic[j] = True
dec_inp = torch.cat([dec_inp, next_items], dim=0)
if sum(list(EOS_dic.values())) == encoder_input.size(1):
break
out = dec_inp.permute(1, 0).to('cpu') # (seq, batch) -> (batch, seq)
outputs = []
for i in range(out.size(0)):
out_tokens = v.lookup_tokens(out[i].tolist())
try:
eos_idx = out_tokens.index('<eos>')
out_tokens = out_tokens[1:eos_idx]
outputs.append(''.join(out_tokens))
except ValueError:
continue
return outputs
def translate(cfg:DictConfig):
print('Loading...')
# make transforms and vocabulary
src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train']
tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train']
src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid']
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid']
data_dict = make_counter(src_train_path=src_train_path,
tgt_train_path=tgt_train_path,
src_valid_path=src_valid_path,
tgt_valid_path=tgt_valid_path
)
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
# load model
d_model = cfg['model']['dim_model']
num_encoder_layers = cfg['model']['num_encoder_layers']
num_decoder_layers = cfg['model']['num_decoder_layers']
nhead = cfg['model']['nhead']
dropout = cfg['model']['dropout']
dim_ff = cfg['model']['dim_ff']
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device)
model.load_state_dict(ckpt['model_state_dict'])
model.eval()
# make dataset
src = []
src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path']
with open(src_test_path,'r') as f:
for line in f:
src.append(line.rstrip())
dim_GCN = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
GCN_model = network.MolecularGCN(dim = dim_GCN,
n_conv_hidden = n_conv_hidden,
n_mlp_hidden = n_mlp_hidden,
dropout = dropout).to(device)
GCN_ckpt = hydra.utils.get_original_cwd() + cfg['translate']['GCN_ckpt']
GCN_model.load_state_dict(torch.load(GCN_ckpt))
GCN_model.eval()
out_dir = cfg['translate']['out_dir']
beam_width = cfg['translate']['beam_size']
nbest = cfg['translate']['nbest']
inf_max_len = cfg['translate']['inf_max_len']
GCN_num_sampling = cfg['translate']['GCN_num_sampling']
with open(hydra.utils.get_original_cwd() + cfg['translate']['annotated_templates'], 'r') as f:
beam_templates = f.read().splitlines()
f.close()
print(f'The number of sampling for GCN: {GCN_num_sampling}')
print('Start translation...')
rsmis =[]
for input_smi in tqdm(src):
input_smi = input_smi.replace(' ', '')
indices = template_prediction(GCN_model=GCN_model, input_smi=input_smi,
num_sampling=GCN_num_sampling, GCN_device=device)
matched_indices = check_templates(indices, input_smi)
print(f"{len(matched_indices)} reaction templates are matched for '{input_smi}'.")
with torch.no_grad():
for i in matched_indices:
input_conditional = smi_tokenizer(i + input_smi).split(' ')
input_tokens = src_transforms(input_conditional).to(device)
outputs = beam_decode(v=v, model=model, input_tokens=input_tokens, template_idx=i,
device=device, inf_max_len=inf_max_len, beam_width=beam_width, nbest=nbest,
Temp=1, beam_templates=beam_templates)
for output in outputs:
output = smi_tokenizer(output)
rsmis.append(i + ' ' + smi_tokenizer(input_smi) + ' >> ' + output)
# set output file name
os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True)
with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}2.txt','w') as f:
for rsmi in rsmis:
f.write(rsmi + '\n')
f.close()
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
translate(cfg)
if __name__ == '__main__':
main()