File size: 13,006 Bytes
e0d0d76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import os
import operator
import itertools
import re
import json
import hydra
from tqdm.auto import tqdm
from config.config import cs
from omegaconf import DictConfig
import rdkit.Chem as Chem
from rdkit.Chem import AllChem
import torch
import torchtext.vocab.vocab as Vocab
import torch.nn.functional as F
from Model.Transformer.model import Transformer
from scripts.preprocess import make_counter ,make_transforms
from Utils.utils import smi_tokenizer
from Model.GCN import network
from Model.GCN.utils import template_prediction, check_templates
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('./data/label_template.json') as f:
r_dict = json.load(f)
class BeamSearchNode(object):
def __init__(self, previousNode, decoder_input, logProb, length):
self.prevNode = previousNode
self.dec_in = decoder_input
self.logp = logProb
self.leng = length
def eval(self, alpha=0.6):
return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha)
def check_templates(indices, input_smi):
matched_indices = []
input_smi = input_smi.replace(' ','')
molecule = Chem.MolFromSmiles(input_smi)
for i in indices:
idx = str(i.item())
rsmi = r_dict[idx]
rxn = AllChem.ReactionFromSmarts(rsmi)
reactants = rxn.GetReactants()
flag = False
for reactant in reactants:
if molecule.HasSubstructMatch(reactant):
flag = True
if flag == True:
matched_indices.append(f'[{i.item()}]')
return matched_indices # ['[0]', '[123]', ... '[742]']
def beam_decode(v:Vocab, model=None, input_tokens=None, template_idx=None,
device=None, inf_max_len=None, beam_width=10, nbest=5, Temp=None,
beam_templates:list=None):
SOS_token = v['<bos>']
EOS_token = v['<eos>']
if template_idx is not None:
template_idx = re.sub(r'\D', '', template_idx)
if template_idx not in beam_templates:
beam_width = 5
nbest = 1
# A batch of one input for Encoder
encoder_input = input_tokens
# Generate encoded features
with torch.no_grad():
encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1
encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
# Start with the start of the sentence token
decoder_input = torch.tensor([[SOS_token]]) # (1,1)
# Starting node
counter = itertools.count()
node = BeamSearchNode(previousNode=None,
decoder_input=decoder_input,
logProb=0, length=0)
with torch.no_grad():
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device)
logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # (1, vocab)
tmp_beam_width = min(beam_width, decoder_output.size(1))
log_prob, indices = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,)
nextnodes = []
for new_k in range(tmp_beam_width):
decoded_t = indices[0][new_k].view(1, -1)
log_p = log_prob[0][new_k].item()
next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq)
nn = BeamSearchNode(previousNode=node,
decoder_input=next_decoder_input,
logProb=node.logp + log_p,
length=node.leng + 1)
score = -nn.eval()
count = next(counter)
nextnodes.append((score, count, nn))
# start beam search
for i in range(inf_max_len - 1):
# fetch the best node
if i == 0:
current_nodes = sorted(nextnodes)[:tmp_beam_width]
else:
current_nodes = sorted(nextnodes)[:beam_width]
nextnodes=[]
# current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,)
scores, counts, nodes, decoder_inputs = [], [], [], []
for score, count, node in current_nodes:
if node.dec_in[0][-1].item() == EOS_token:
nextnodes.append((score, count, node))
else:
scores.append(score)
counts.append(count)
nodes.append(node)
decoder_inputs.append(node.dec_in)
if not bool(decoder_inputs):
break
decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq)
# adjust batch_size
enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1)
mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1)
with torch.no_grad():
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device)
logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask)
logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab)
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # extract log_softmax of last token
# decoder_output.shape = (batch, vocab)
for beam, score in enumerate(scores):
for token in range(EOS_token, decoder_output.size(-1)): # remove unk, pad, bosは最初から捨てる
decoded_t = torch.tensor([[token]])
log_p = decoder_output[beam, token].item()
next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1)
node = BeamSearchNode(previousNode=nodes[beam],
decoder_input=next_decoder_input,
logProb=nodes[beam].logp + log_p,
length=nodes[beam].leng + 1)
score = -node.eval()
count = next(counter)
nextnodes.append((score, count, node))
outputs = []
for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]:
# endnodes = [(score, node), (score, node)...]
output = n.dec_in.squeeze(0).tolist()[1:-1] # remove bos and eos
output = v.lookup_tokens(output)
output = ''.join(output)
outputs.append(output)
return outputs
def greedy_translate(v:Vocab, model=None, input_tokens=None, device=None, inf_max_len=None):
'''
in:
input_tokens: (seq, batch)
out:
outputs: list of SMILES(str).
'''
SOS_token = v['<bos>']
EOS_token = v['<eos>']
# A batch of one input for Encoder
encoder_input = input_tokens.permute(1, 0) # (batch,seq) -> (seq, batch)
# Generate encoded features
with torch.no_grad():
enc_out, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
# Start with the SOS token
dec_inp = torch.tensor([[SOS_token]]).expand(1, encoder_input.size(1)).to(device) # (1, batch)
EOS_dic = {i:False for i in range(encoder_input.size(1))}
for i in range(inf_max_len - 1):
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(dec_inp.size(0)).to(device)
logits = model.decode(memory=enc_out, tgt=dec_inp, tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
dec_out = F.softmax(logits[-1, :, :], dim=1) # extract softmax of last token, (batch, vocab)
next_items = dec_out.topk(1)[1].permute(1, 0) # (seq, batch) -> (batch, seq)
EOS_indices = (next_items == EOS_token)
# update EOS_dic
for j, EOS in enumerate(EOS_indices[0]):
if EOS:
EOS_dic[j] = True
dec_inp = torch.cat([dec_inp, next_items], dim=0)
if sum(list(EOS_dic.values())) == encoder_input.size(1):
break
out = dec_inp.permute(1, 0).to('cpu') # (seq, batch) -> (batch, seq)
outputs = []
for i in range(out.size(0)):
out_tokens = v.lookup_tokens(out[i].tolist())
try:
eos_idx = out_tokens.index('<eos>')
out_tokens = out_tokens[1:eos_idx]
outputs.append(''.join(out_tokens))
except ValueError:
continue
return outputs
def translate(cfg:DictConfig):
print('Loading...')
# make transforms and vocabulary
src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train']
tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train']
src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid']
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid']
data_dict = make_counter(src_train_path=src_train_path,
tgt_train_path=tgt_train_path,
src_valid_path=src_valid_path,
tgt_valid_path=tgt_valid_path
)
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
# load model
d_model = cfg['model']['dim_model']
num_encoder_layers = cfg['model']['num_encoder_layers']
num_decoder_layers = cfg['model']['num_decoder_layers']
nhead = cfg['model']['nhead']
dropout = cfg['model']['dropout']
dim_ff = cfg['model']['dim_ff']
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device)
model.load_state_dict(ckpt['model_state_dict'])
model.eval()
# make dataset
src = []
src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path']
with open(src_test_path,'r') as f:
for line in f:
src.append(line.rstrip())
dim_GCN = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
GCN_model = network.MolecularGCN(dim = dim_GCN,
n_conv_hidden = n_conv_hidden,
n_mlp_hidden = n_mlp_hidden,
dropout = dropout).to(device)
GCN_ckpt = hydra.utils.get_original_cwd() + cfg['translate']['GCN_ckpt']
GCN_model.load_state_dict(torch.load(GCN_ckpt))
GCN_model.eval()
out_dir = cfg['translate']['out_dir']
beam_width = cfg['translate']['beam_size']
nbest = cfg['translate']['nbest']
inf_max_len = cfg['translate']['inf_max_len']
GCN_num_sampling = cfg['translate']['GCN_num_sampling']
with open(hydra.utils.get_original_cwd() + cfg['translate']['annotated_templates'], 'r') as f:
beam_templates = f.read().splitlines()
f.close()
print(f'The number of sampling for GCN: {GCN_num_sampling}')
print('Start translation...')
rsmis =[]
for input_smi in tqdm(src):
input_smi = input_smi.replace(' ', '')
indices = template_prediction(GCN_model=GCN_model, input_smi=input_smi,
num_sampling=GCN_num_sampling, GCN_device=device)
matched_indices = check_templates(indices, input_smi)
print(f"{len(matched_indices)} reaction templates are matched for '{input_smi}'.")
with torch.no_grad():
for i in matched_indices:
input_conditional = smi_tokenizer(i + input_smi).split(' ')
input_tokens = src_transforms(input_conditional).to(device)
outputs = beam_decode(v=v, model=model, input_tokens=input_tokens, template_idx=i,
device=device, inf_max_len=inf_max_len, beam_width=beam_width, nbest=nbest,
Temp=1, beam_templates=beam_templates)
for output in outputs:
output = smi_tokenizer(output)
rsmis.append(i + ' ' + smi_tokenizer(input_smi) + ' >> ' + output)
# set output file name
os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True)
with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}2.txt','w') as f:
for rsmi in rsmis:
f.write(rsmi + '\n')
f.close()
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
translate(cfg)
if __name__ == '__main__':
main() |