problem_id
stringclasses
9 values
name
stringclasses
4 values
problem
stringclasses
9 values
test_cases
stringclasses
9 values
difficulty
stringclasses
4 values
language
sequencelengths
1
1
source
stringclasses
1 value
num_solutions
int64
1
11.8k
starter_code
stringclasses
1 value
subset
stringclasses
3 values
962cf33a1adcfb26737ccaf45cf8e75b
UNKNOWN
Polycarp has $n$ different binary words. A word called binary if it contains only characters '0' and '1'. For example, these words are binary: "0001", "11", "0" and "0011100". Polycarp wants to offer his set of $n$ binary words to play a game "words". In this game, players name words and each next word (starting from the second) must start with the last character of the previous word. The first word can be any. For example, these sequence of words can be named during the game: "0101", "1", "10", "00", "00001". Word reversal is the operation of reversing the order of the characters. For example, the word "0111" after the reversal becomes "1110", the word "11010" after the reversal becomes "01011". Probably, Polycarp has such a set of words that there is no way to put them in the order correspondent to the game rules. In this situation, he wants to reverse some words from his set so that: the final set of $n$ words still contains different words (i.e. all words are unique); there is a way to put all words of the final set of words in the order so that the final sequence of $n$ words is consistent with the game rules. Polycarp wants to reverse minimal number of words. Please, help him. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 10^4$) — the number of test cases in the input. Then $t$ test cases follow. The first line of a test case contains one integer $n$ ($1 \le n \le 2\cdot10^5$) — the number of words in the Polycarp's set. Next $n$ lines contain these words. All of $n$ words aren't empty and contains only characters '0' and '1'. The sum of word lengths doesn't exceed $4\cdot10^6$. All words are different. Guaranteed, that the sum of $n$ for all test cases in the input doesn't exceed $2\cdot10^5$. Also, guaranteed that the sum of word lengths for all test cases in the input doesn't exceed $4\cdot10^6$. -----Output----- Print answer for all of $t$ test cases in the order they appear. If there is no answer for the test case, print -1. Otherwise, the first line of the output should contain $k$ ($0 \le k \le n$) — the minimal number of words in the set which should be reversed. The second line of the output should contain $k$ distinct integers — the indexes of the words in the set which should be reversed. Words are numerated from $1$ to $n$ in the order they appear. If $k=0$ you can skip this line (or you can print an empty line). If there are many answers you can print any of them. -----Example----- Input 4 4 0001 1000 0011 0111 3 010 101 0 2 00000 00001 4 01 001 0001 00001 Output 1 3 -1 0 2 1 2
{ "inputs": [ "4\n4\n0001\n1000\n0011\n0111\n3\n010\n101\n0\n2\n00000\n00001\n4\n01\n001\n0001\n00001\n" ], "outputs": [ "1\n3 \n-1\n0\n\n2\n1 2 \n" ] }
INTERVIEW
[ "PYTHON3" ]
CODEFORCES
7,488
codeparrot/apps
330c01483ac5cf93445094814ccde9e9
UNKNOWN
Mikhail walks on a Cartesian plane. He starts at the point $(0, 0)$, and in one move he can go to any of eight adjacent points. For example, if Mikhail is currently at the point $(0, 0)$, he can go to any of the following points in one move: $(1, 0)$; $(1, 1)$; $(0, 1)$; $(-1, 1)$; $(-1, 0)$; $(-1, -1)$; $(0, -1)$; $(1, -1)$. If Mikhail goes from the point $(x1, y1)$ to the point $(x2, y2)$ in one move, and $x1 \ne x2$ and $y1 \ne y2$, then such a move is called a diagonal move. Mikhail has $q$ queries. For the $i$-th query Mikhail's target is to go to the point $(n_i, m_i)$ from the point $(0, 0)$ in exactly $k_i$ moves. Among all possible movements he want to choose one with the maximum number of diagonal moves. Your task is to find the maximum number of diagonal moves or find that it is impossible to go from the point $(0, 0)$ to the point $(n_i, m_i)$ in $k_i$ moves. Note that Mikhail can visit any point any number of times (even the destination point!). -----Input----- The first line of the input contains one integer $q$ ($1 \le q \le 10^4$) — the number of queries. Then $q$ lines follow. The $i$-th of these $q$ lines contains three integers $n_i$, $m_i$ and $k_i$ ($1 \le n_i, m_i, k_i \le 10^{18}$) — $x$-coordinate of the destination point of the query, $y$-coordinate of the destination point of the query and the number of moves in the query, correspondingly. -----Output----- Print $q$ integers. The $i$-th integer should be equal to -1 if Mikhail cannot go from the point $(0, 0)$ to the point $(n_i, m_i)$ in exactly $k_i$ moves described above. Otherwise the $i$-th integer should be equal to the the maximum number of diagonal moves among all possible movements. -----Example----- Input 3 2 2 3 4 3 7 10 1 9 Output 1 6 -1 -----Note----- One of the possible answers to the first test case: $(0, 0) \to (1, 0) \to (1, 1) \to (2, 2)$. One of the possible answers to the second test case: $(0, 0) \to (0, 1) \to (1, 2) \to (0, 3) \to (1, 4) \to (2, 3) \to (3, 2) \to (4, 3)$. In the third test case Mikhail cannot reach the point $(10, 1)$ in 9 moves.
{ "inputs": [ "3\n2 2 3\n4 3 7\n10 1 9\n" ], "outputs": [ "1\n6\n-1\n" ] }
INTERVIEW
[ "PYTHON3" ]
CODEFORCES
11,766
codeparrot/apps
e8ae3ea804a726415e12e2b0619d8657
UNKNOWN
You are given three sequences: $a_1, a_2, \ldots, a_n$; $b_1, b_2, \ldots, b_n$; $c_1, c_2, \ldots, c_n$. For each $i$, $a_i \neq b_i$, $a_i \neq c_i$, $b_i \neq c_i$. Find a sequence $p_1, p_2, \ldots, p_n$, that satisfy the following conditions: $p_i \in \{a_i, b_i, c_i\}$ $p_i \neq p_{(i \mod n) + 1}$. In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements $i,i+1$ adjacent for $i<n$ and also elements $1$ and $n$) will have equal value. It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence. -----Input----- The first line of input contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains one integer $n$ ($3 \leq n \leq 100$): the number of elements in the given sequences. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 100$). The third line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \leq b_i \leq 100$). The fourth line contains $n$ integers $c_1, c_2, \ldots, c_n$ ($1 \leq c_i \leq 100$). It is guaranteed that $a_i \neq b_i$, $a_i \neq c_i$, $b_i \neq c_i$ for all $i$. -----Output----- For each test case, print $n$ integers: $p_1, p_2, \ldots, p_n$ ($p_i \in \{a_i, b_i, c_i\}$, $p_i \neq p_{i \mod n + 1}$). If there are several solutions, you can print any. -----Example----- Input 5 3 1 1 1 2 2 2 3 3 3 4 1 2 1 2 2 1 2 1 3 4 3 4 7 1 3 3 1 1 1 1 2 4 4 3 2 2 4 4 2 2 2 4 4 2 3 1 2 1 2 3 3 3 1 2 10 1 1 1 2 2 2 3 3 3 1 2 2 2 3 3 3 1 1 1 2 3 3 3 1 1 1 2 2 2 3 Output 1 2 3 1 2 1 2 1 3 4 3 2 4 2 1 3 2 1 2 3 1 2 3 1 2 3 2 -----Note----- In the first test case $p = [1, 2, 3]$. It is a correct answer, because: $p_1 = 1 = a_1$, $p_2 = 2 = b_2$, $p_3 = 3 = c_3$ $p_1 \neq p_2 $, $p_2 \neq p_3 $, $p_3 \neq p_1$ All possible correct answers to this test case are: $[1, 2, 3]$, $[1, 3, 2]$, $[2, 1, 3]$, $[2, 3, 1]$, $[3, 1, 2]$, $[3, 2, 1]$. In the second test case $p = [1, 2, 1, 2]$. In this sequence $p_1 = a_1$, $p_2 = a_2$, $p_3 = a_3$, $p_4 = a_4$. Also we can see, that no two adjacent elements of the sequence are equal. In the third test case $p = [1, 3, 4, 3, 2, 4, 2]$. In this sequence $p_1 = a_1$, $p_2 = a_2$, $p_3 = b_3$, $p_4 = b_4$, $p_5 = b_5$, $p_6 = c_6$, $p_7 = c_7$. Also we can see, that no two adjacent elements of the sequence are equal.
{ "inputs": [ "5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n" ], "outputs": [ "1 2 3\n1 2 1 2\n1 3 4 1 2 1 4\n1 2 3\n1 2 1 2 3 2 3 1 3 2\n" ] }
INTERVIEW
[ "PYTHON3" ]
CODEFORCES
4,987
codeparrot/apps
eb422b41811612b9fe4a2b11eec17665
UNKNOWN
This is an interactive problem. In good old times dwarves tried to develop extrasensory abilities: * Exactly n dwarves entered completely dark cave. * Each dwarf received a hat — white or black. While in cave, none of the dwarves was able to see either his own hat or hats of other Dwarves. * Dwarves went out of the cave to the meadow and sat at an arbitrary place one after the other. When a dwarf leaves the cave, he sees the colors of all hats of all dwarves that are seating on the meadow (i.e. left the cave before him). However, he is not able to see the color of his own hat and none of the dwarves can give him this information. * The task for dwarves was to got diverged into two parts — one with dwarves with white hats and one with black hats. After many centuries, dwarves finally managed to select the right place on the meadow without error. Will you be able to repeat their success? You are asked to successively name n different integer points on the plane. After naming each new point you will be given its color — black or white. Your task is to ensure that the named points can be split by a line in such a way that all points of one color lie on the same side from the line and points of different colors lie on different sides. Moreover, no points can belong to the line. Also, you need to report any such line at the end of the process. In this problem, the interactor is adaptive — the colors of the points in the tests are not fixed beforehand and the jury program can select them arbitrarily, in particular, depending on your program output. Interaction The first line of the standard input stream contains an integer n (1 ≤ n ≤ 30) — the number of points your program should name. Then n times your program must print two integer coordinates x and y (0 ≤ x ≤ 109, 0 ≤ y ≤ 109). All points you print must be distinct. In response to each coordinate pair your program will receive the string "black", if the point is black, or "white", if the point is white. When all n points are processed, you need to print four integers x1, y1, x2 and y2 (0 ≤ x1, y1 ≤ 109, 0 ≤ x2, y2 ≤ 109) — coordinates of points (x1, y1) and (x2, y2), which form a line, which separates n points into black and white. Points (x1, y1) and (x2, y2) should not coincide. Hacks To hack solution use the following format. The first line must contain word "hack", the second line should contain the number n and the last line should contain the sequence of 0 and 1 — colors of points, which will be reported to the solution. Unlike the jury tests, colors of points in hacks are always fixed in advance. Of course, the hacked solution wouldn't be able to get the information about the colors in advance. For example, the hack corresponding to sample test will look like this: hack 5 0 0 1 1 0 Example Input 5 <span class="tex-span"></span> black <span class="tex-span"></span> black <span class="tex-span"></span> white <span class="tex-span"></span> white <span class="tex-span"></span> black Output <span class="tex-span"></span> 0 0 <span class="tex-span"></span> 3 1 <span class="tex-span"></span> 2 3 <span class="tex-span"></span> 4 4 <span class="tex-span"></span> 0 2 <span class="tex-span"></span> 1 3 4 1 Note In the sample input and output values are aligned only for simplicity of interpreting them chronologically. In real interaction no "extra" line breaks should appear. The following picture illustrates the first test. <image>
{"inputs": ["hack\n30\n1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "random\n22\n2\n", "random\n20\n11\n", "random\n10\n1\n", "random\n20\n12\n", "random\n30\n14\n", "random\n23\n1\n", "predefined\n15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 0\n", "random\n21\n2\n", "random\n22\n1\n", "random\n28\n1\n", "random\n28\n2\n", "chess\n10\n", "chess\n11\n", "random\n25\n2\n", "random\n24\n1\n", "random\n13\n1\n", "chess\n19\n", "predefined\n15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "random\n29\n1\n", "random\n20\n1\n", "random\n26\n1\n", "predefined\n2\n0 1\n", "random\n16\n1\n", "random\n15\n1\n", "random\n8\n1\n", "random\n19\n1\n", "random\n21\n1\n", "random\n27\n1\n", "predefined\n2\n0 0\n", "random\n2\n1\n", "predefined\n15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", "random\n3\n1\n", "predefined\n15\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n", "predefined\n29\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", "hack\n30\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "predefined\n29\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0\n", "predefined\n30\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", "random\n23\n2\n", "random\n29\n2\n", "random\n30\n13\n", "random\n9\n1\n", "predefined\n16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0\n", "predefined\n8\n1 1 1 1 1 1 1 0\n", "random\n30\n2\n", "hack\n5\n0 0 1 1 0\n", "random\n25\n1\n", "random\n14\n1\n", "predefined\n8\n1 1 1 1 1 1 1 1\n", "random\n12\n1\n", "random\n30\n1\n", "random\n17\n1\n", "random\n26\n2\n", "chess\n30\n", "random\n18\n1\n", "predefined\n29\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n", "chess\n20\n", "predefined\n8\n0 0 0 0 0 0 0 0\n", "random\n27\n2\n", "random\n5\n1\n", "predefined\n29\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "random\n24\n2\n", "random\n11\n1\n", "random\n6\n1\n", "random\n4\n1\n", "predefined\n30\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "predefined\n1\n0\n", "predefined\n5\n0 1 0 1 1\n", "chess\n29\n", "random\n7\n1\n", "random\n1\n1\n", "predefined\n8\n0 1 0 1 0 1 0 1\n", "predefined\n1\n1\n", "hack\n30\n1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1\n", "random\n7\n2\n", "modnar\n20\n11\n", "random\n10\n2\n", "sandom\n20\n12\n", "random\n30\n25\n", "random\n34\n1\n", "oredefined\n15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 0\n", "radnom\n21\n2\n", "random\n21\n0\n", "rbndom\n28\n1\n", "random\n13\n2\n", "cgess\n10\n", "ciess\n11\n", "random\n2\n2\n", "random\n35\n1\n", "random\n13\n0\n", "shesc\n19\n", "predefined\n15\n1 1 2 1 1 1 1 1 1 1 1 1 1 1 1\n", "modnar\n29\n2\n", "modnar\n15\n1\n", "random\n26\n0\n", "predefinec\n2\n0 1\n", "random\n8\n2\n", "random\n15\n0\n", "rnadom\n8\n1\n", "rbndom\n19\n1\n", "sandom\n21\n1\n", "r`ndom\n27\n1\n", "denifederp\n2\n0 1\n", "rbndom\n3\n1\n", "predefined\n15\n0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0\n", "random\n3\n0\n", "predefined\n15\n0 1 0 1 0 1 0 1 0 0 0 1 0 1 0\n", "predefined\n3\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", "hack\n30\n0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", "predefined\n29\n1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0\n", "predefined\n30\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", "random\n15\n2\n", "random\n58\n2\n", "random\n30\n0\n", "raodom\n9\n1\n", "predefined\n16\n1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0\n", "predefined\n8\n0 1 1 1 1 1 1 0\n", "r`ndom\n30\n2\n", "hack\n5\n0 1 1 1 0\n", "modnar\n2\n1\n", "random\n14\n2\n", "precefined\n8\n1 1 1 1 1 1 1 1\n", "r`ndom\n14\n1\n", "random\n30\n4\n", "raneom\n17\n1\n", "randon\n26\n2\n", "ssehc\n30\n", "random\n31\n1\n", "predefined\n29\n0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n", "chess\n13\n", "denifederp\n8\n0 0 0 0 0 0 0 0\n", "randpm\n27\n2\n", "random\n5\n2\n", "5\n<span class=\"tex-span\"></span>\nblack\n<span class=\"tex-span\"></span>\nblack\n<span class=\"tex-span\"></span>\nwhite\n<span class=\"tex-span\"></span>\nwhite\n<span class=\"tex-span\"></span>\nblack\n"], "outputs": ["0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n0 0 1000000000 2\n", "0 1\n500000000 1\n250000000 1\n125000000 1\n187500000 1\n125000000 0 187500000 2\n"]}
HARD
[ "PYTHON3" ]
CODEFORCES
2
BAAI/TACO
c82b99dc987eaef4c73d6c165b66145a
UNKNOWN
There are $n$ candy boxes in front of Tania. The boxes are arranged in a row from left to right, numbered from $1$ to $n$. The $i$-th box contains $r_i$ candies, candies have the color $c_i$ (the color can take one of three values ​​— red, green, or blue). All candies inside a single box have the same color (and it is equal to $c_i$). Initially, Tanya is next to the box number $s$. Tanya can move to the neighbor box (that is, with a number that differs by one) or eat candies in the current box. Tanya eats candies instantly, but the movement takes one second. If Tanya eats candies from the box, then the box itself remains in place, but there is no more candies in it. In other words, Tanya always eats all the candies from the box and candies in the boxes are not refilled. It is known that Tanya cannot eat candies of the same color one after another (that is, the colors of candies in two consecutive boxes from which she eats candies are always different). In addition, Tanya's appetite is constantly growing, so in each next box from which she eats candies, there should be strictly more candies than in the previous one. Note that for the first box from which Tanya will eat candies, there are no restrictions on the color and number of candies. Tanya wants to eat at least $k$ candies. What is the minimum number of seconds she will need? Remember that she eats candies instantly, and time is spent only on movements. -----Input----- The first line contains three integers $n$, $s$ and $k$ ($1 \le n \le 50$, $1 \le s \le n$, $1 \le k \le 2000$) — number of the boxes, initial position of Tanya and lower bound on number of candies to eat. The following line contains $n$ integers $r_i$ ($1 \le r_i \le 50$) — numbers of candies in the boxes. The third line contains sequence of $n$ letters 'R', 'G' and 'B', meaning the colors of candies in the correspondent boxes ('R' for red, 'G' for green, 'B' for blue). Recall that each box contains candies of only one color. The third line contains no spaces. -----Output----- Print minimal number of seconds to eat at least $k$ candies. If solution doesn't exist, print "-1". -----Examples----- Input 5 3 10 1 2 3 4 5 RGBRR Output 4 Input 2 1 15 5 6 RG Output -1 -----Note----- The sequence of actions of Tanya for the first example: move from the box $3$ to the box $2$; eat candies from the box $2$; move from the box $2$ to the box $3$; eat candy from the box $3$; move from the box $3$ to the box $4$; move from the box $4$ to the box $5$; eat candies from the box $5$. Since Tanya eats candy instantly, the required time is four seconds.
{"inputs": ["5 3 10\n1 2 3 4 5\nRGBRR\n", "2 1 15\n5 6\nRG\n", "6 1 21\n4 2 3 5 1 6\nRGBGRB\n", "6 1 21\n6 5 4 3 2 1\nRGBRGB\n", "1 1 10\n10\nR\n", "2 1 10\n5 5\nRG\n", "2 1 10\n5 6\nRR\n", "5 3 10\n1 2 3 4 5\nRGBRG\n", "9 1 6\n1 1 1 3 3 3 2 2 2\nRGGBRRGBB\n", "50 39 2000\n48 43 26 24 46 37 15 30 39 34 4 14 29 34 8 18 40 8 17 37 15 29 2 23 41 7 12 13 36 11 24 22 26 46 11 31 10 46 11 35 6 41 16 50 11 1 46 20 46 28\nBGBBBBBBRGGBBBRRRRBBGRGGRBBRBBBRBBBBBRRGBGGRRRBBRB\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 29 49 33 41 14 25 46 43 7 47 28 25 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "50 32 600\n21 21 18 47 16 11 10 46 9 15 27 5 11 42 29 25 16 41 31 8 12 28 1 24 17 40 45 12 33 32 34 2 45 17 49 17 20 42 15 17 8 29 2 20 4 27 50 1 49 1\nBBRBBGBGBBRBGRRGRGGGBGBRRBBBGGBBBBGBGBRBBGRRGGBRGR\n", "50 37 500\n25 43 15 16 29 23 46 18 15 21 33 26 38 25 2 17 48 50 33 31 3 45 40 12 42 29 37 42 7 11 47 16 44 17 27 46 32 23 14 7 27 25 13 32 43 33 36 39 35 7\nGGBBRGBRRRRBBRGBRRRGGRGGRGGBRRRGBBRRGRGGRBGBGGRGBR\n", "50 4 200\n14 10 50 47 41 9 22 21 42 36 50 10 27 28 39 1 36 12 45 35 17 3 15 25 32 4 34 39 44 34 20 15 18 1 38 25 20 45 24 9 18 15 35 36 12 9 28 4 44 10\nBGBRRBGBRRRGRGRBRGGGRBRRGBBGGRBRRGGRGGGBRRBRGGBGBG\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nRRRRRRRRRRRRRRRRRRRRRRRRRGGGGGGGGGGGGGGGGGGGGGGGGG\n", "30 28 208\n3 42 42 47 46 44 5 28 35 28 35 44 25 44 47 3 3 35 28 5 3 42 3 46 25 25 5 47 46 3\nBGBBGBBBBGRRGGGBRGRGRRGBBRRRRG\n", "39 21 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 20 29 21 34 36 39 30 34 21 20 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "48 2 259\n25 31 22 30 30 17 31 50 28 30 46 43 4 6 10 22 50 14 5 46 12 6 46 3 17 12 4 28 25 14 5 5 6 14 22 12 17 43 43 10 4 3 31 3 25 28 50 10\nBBBBGGRRBRRBBRGGGBGGRGBRBGRGRGRBBRRBRRGBGBGGGRBR\n", "48 25 323\n39 37 32 4 4 32 18 44 49 4 12 12 12 22 22 37 38 32 24 45 44 37 18 39 45 22 24 22 45 39 4 22 24 22 12 49 4 29 18 38 29 29 38 44 12 12 49 4\nRRRRRBRRGBBRGRGGBGGBGBBBRBRGGGGBBRGRBGGGRBRBBRBG\n", "48 33 357\n18 37 22 21 4 17 39 32 40 43 29 29 50 21 39 43 11 11 4 50 36 40 32 50 18 32 11 36 29 36 22 21 29 43 49 18 17 29 37 40 17 37 49 4 39 49 22 29\nGRGGGGBRBRRGGRGBRGBBGRBRRGBBRRBBBGRBBBBGRGGRRBRG\n", "50 50 2000\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "30 28 208\n3 42 42 47 46 44 5 28 35 28 35 44 25 44 47 3 3 35 28 5 3 42 3 46 25 25 5 47 46 3\nBGBBGBBBBGRRGGGBRGRGRRGBBRRRRG\n", "50 39 2000\n48 43 26 24 46 37 15 30 39 34 4 14 29 34 8 18 40 8 17 37 15 29 2 23 41 7 12 13 36 11 24 22 26 46 11 31 10 46 11 35 6 41 16 50 11 1 46 20 46 28\nBGBBBBBBRGGBBBRRRRBBGRGGRBBRBBBRBBBBBRRGBGGRRRBBRB\n", "50 32 600\n21 21 18 47 16 11 10 46 9 15 27 5 11 42 29 25 16 41 31 8 12 28 1 24 17 40 45 12 33 32 34 2 45 17 49 17 20 42 15 17 8 29 2 20 4 27 50 1 49 1\nBBRBBGBGBBRBGRRGRGGGBGBRRBBBGGBBBBGBGBRBBGRRGGBRGR\n", "48 2 259\n25 31 22 30 30 17 31 50 28 30 46 43 4 6 10 22 50 14 5 46 12 6 46 3 17 12 4 28 25 14 5 5 6 14 22 12 17 43 43 10 4 3 31 3 25 28 50 10\nBBBBGGRRBRRBBRGGGBGGRGBRBGRGRGRBBRRBRRGBGBGGGRBR\n", "1 1 10\n10\nR\n", "9 1 6\n1 1 1 3 3 3 2 2 2\nRGGBRRGBB\n", "5 3 10\n1 2 3 4 5\nRGBRG\n", "6 1 21\n6 5 4 3 2 1\nRGBRGB\n", "2 1 10\n5 5\nRG\n", "2 1 10\n5 6\nRR\n", "50 50 2000\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "48 33 357\n18 37 22 21 4 17 39 32 40 43 29 29 50 21 39 43 11 11 4 50 36 40 32 50 18 32 11 36 29 36 22 21 29 43 49 18 17 29 37 40 17 37 49 4 39 49 22 29\nGRGGGGBRBRRGGRGBRGBBGRBRRGBBRRBBBGRBBBBGRGGRRBRG\n", "48 25 323\n39 37 32 4 4 32 18 44 49 4 12 12 12 22 22 37 38 32 24 45 44 37 18 39 45 22 24 22 45 39 4 22 24 22 12 49 4 29 18 38 29 29 38 44 12 12 49 4\nRRRRRBRRGBBRGRGGBGGBGBBBRBRGGGGBBRGRBGGGRBRBBRBG\n", "39 21 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 20 29 21 34 36 39 30 34 21 20 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 29 49 33 41 14 25 46 43 7 47 28 25 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "50 4 200\n14 10 50 47 41 9 22 21 42 36 50 10 27 28 39 1 36 12 45 35 17 3 15 25 32 4 34 39 44 34 20 15 18 1 38 25 20 45 24 9 18 15 35 36 12 9 28 4 44 10\nBGBRRBGBRRRGRGRBRGGGRBRRGBBGGRBRRGGRGGGBRRBRGGBGBG\n", "6 1 21\n4 2 3 5 1 6\nRGBGRB\n", "50 37 500\n25 43 15 16 29 23 46 18 15 21 33 26 38 25 2 17 48 50 33 31 3 45 40 12 42 29 37 42 7 11 47 16 44 17 27 46 32 23 14 7 27 25 13 32 43 33 36 39 35 7\nGGBBRGBRRRRBBRGBRRRGGRGGRGGBRRRGBBRRGRGGRBGBGGRGBR\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nRRRRRRRRRRRRRRRRRRRRRRRRRGGGGGGGGGGGGGGGGGGGGGGGGG\n", "50 39 2000\n48 43 26 24 46 37 15 30 39 34 4 14 29 34 8 18 40 8 17 37 15 29 2 23 41 7 12 13 36 11 24 22 26 46 11 31 1 46 11 35 6 41 16 50 11 1 46 20 46 28\nBGBBBBBBRGGBBBRRRRBBGRGGRBBRBBBRBBBBBRRGBGGRRRBBRB\n", "48 2 259\n25 31 22 30 30 17 31 50 28 30 46 43 4 6 10 22 50 14 5 46 12 6 46 3 17 12 4 28 25 21 5 5 6 14 22 12 17 43 43 10 4 3 31 3 25 28 50 10\nBBBBGGRRBRRBBRGGGBGGRGBRBGRGRGRBBRRBRRGBGBGGGRBR\n", "9 1 6\n1 1 2 3 3 3 2 2 2\nRGGBRRGBB\n", "2 1 10\n9 5\nRG\n", "48 33 357\n18 37 22 21 4 17 39 32 40 43 29 29 50 21 39 43 11 11 4 50 36 40 32 50 18 32 11 36 29 36 22 21 29 43 49 18 17 29 37 40 17 37 2 4 39 49 22 29\nGRGGGGBRBRRGGRGBRGBBGRBRRGBBRRBBBGRBBBBGRGGRRBRG\n", "39 21 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 10 29 21 34 36 39 30 34 21 20 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "50 37 500\n25 43 15 16 29 23 46 18 15 21 33 26 38 25 2 17 48 50 33 31 3 23 40 12 42 29 37 42 7 11 47 16 44 17 27 46 32 23 14 7 27 25 13 32 43 33 36 39 35 7\nGGBBRGBRRRRBBRGBRRRGGRGGRGGBRRRGBBRRGRGGRBGBGGRGBR\n", "39 36 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 10 29 21 34 36 39 30 34 21 20 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "30 28 208\n3 42 42 47 46 12 5 28 35 28 35 44 25 44 47 3 3 35 28 5 3 42 3 46 25 25 5 47 46 3\nBGBBGBBBBGRRGGGBRGRGRRGBBRRRRG\n", "9 1 6\n1 1 1 3 3 6 2 2 2\nRGGBRRGBB\n", "5 3 10\n1 2 4 4 5\nRGBRG\n", "39 21 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 20 44 21 34 36 39 30 34 21 20 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "50 4 200\n14 10 50 47 41 9 22 21 42 36 50 10 27 28 39 1 36 12 45 35 17 3 15 25 32 4 34 39 44 34 20 15 18 1 38 25 20 3 24 9 18 15 35 36 12 9 28 4 44 10\nBGBRRBGBRRRGRGRBRGGGRBRRGBBGGRBRRGGRGGGBRRBRGGBGBG\n", "6 1 21\n6 5 4 3 4 1\nRGBRGB\n", "50 50 2000\n1 3 5 7 9 11 13 15 32 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 29 49 23 41 14 25 46 43 7 47 28 25 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "6 1 21\n4 2 3 5 1 6\nRGBRGB\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 11 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nRRRRRRRRRRRRRRRRRRRRRRRRRGGGGGGGGGGGGGGGGGGGGGGGGG\n", "2 1 24\n5 6\nRG\n", "48 2 259\n25 31 22 30 30 17 31 50 28 30 46 43 4 6 10 22 50 27 5 46 12 6 46 3 17 12 4 28 25 21 5 5 6 14 22 12 17 43 43 10 4 3 31 3 25 28 50 10\nBBBBGGRRBRRBBRGGGBGGRGBRBGRGRGRBBRRBRRGBGBGGGRBR\n", "9 1 6\n1 1 2 5 3 3 2 2 2\nRGGBRRGBB\n", "50 50 2000\n1 3 5 7 9 11 13 15 32 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 29 49 23 15 14 25 46 43 7 47 28 25 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "6 1 21\n4 2 3 5 1 6\nBGRBGR\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 11 44 42 40 38 36 34 32 44 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nRRRRRRRRRRRRRRRRRRRRRRRRRGGGGGGGGGGGGGGGGGGGGGGGGG\n", "9 1 6\n1 1 1 5 3 3 2 2 2\nRGGBRRGBB\n", "50 50 2000\n1 3 5 7 9 11 13 15 32 19 21 32 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "39 36 282\n13 39 20 29 30 14 29 29 30 29 16 39 50 13 16 45 36 36 13 10 29 21 34 36 39 30 34 21 21 14 16 45 21 45 29 34 50 50 14\nGGGBRRGRBGBRRBRGRBRBBGBGBGRRRGGRBBRGBGB\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 29 49 23 15 14 25 46 43 7 47 28 50 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "6 1 21\n5 2 3 5 1 6\nBGRBGR\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 11 44 42 40 38 36 34 32 44 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGGGGGGGGGGGGGGGGGGGGGGGGGRRRRRRRRRRRRRRRRRRRRRRRRR\n", "9 1 6\n1 1 1 5 3 1 2 2 2\nRGGBRRGBB\n", "50 50 2000\n1 3 5 7 9 11 13 15 32 19 21 32 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 24 17 23 48 20 44 46 44 13 4 40 49 23 15 14 25 46 43 7 47 28 50 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 17 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 11 44 42 40 38 36 34 32 44 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGGGGGGGGGGGGGGGGGGGGGGGGGRRRRRRRRRRRRRRRRRRRRRRRRR\n", "9 1 6\n1 1 1 5 3 1 4 2 2\nRGGBRRGBB\n", "50 50 2000\n1 3 7 7 9 11 13 15 32 19 21 32 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 50 2000\n1 3 7 7 9 11 13 15 32 19 21 32 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 10 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 50 2000\n1 3 7 7 9 11 13 15 32 19 21 32 25 10 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 10 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 50 2000\n1 3 7 7 9 11 13 15 32 19 21 32 25 10 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 46 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 10 6 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "50 39 2000\n48 43 26 24 46 37 15 30 39 34 4 14 29 34 8 18 40 8 17 40 15 29 2 23 41 7 12 13 36 11 24 22 26 46 11 31 10 46 11 35 6 41 16 50 11 1 46 20 46 28\nBGBBBBBBRGGBBBRRRRBBGRGGRBBRBBBRBBBBBRRGBGGRRRBBRB\n", "48 2 259\n25 31 22 30 30 17 31 50 28 30 46 43 4 6 10 22 50 14 5 46 12 6 46 4 17 12 4 28 25 14 5 5 6 14 22 12 17 43 43 10 4 3 31 3 25 28 50 10\nBBBBGGRRBRRBBRGGGBGGRGBRBGRGRGRBBRRBRRGBGBGGGRBR\n", "1 1 20\n10\nR\n", "2 1 16\n5 5\nRG\n", "2 1 10\n1 6\nRR\n", "50 50 2000\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 7 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nGRGRGBBGGRGGRRRGGBGGGRRRBGRRBGBRGBBGGGGRRGGBBRRRRG\n", "48 33 357\n18 37 22 21 4 17 39 32 40 43 29 29 50 21 39 43 11 11 4 50 36 40 32 50 18 32 11 36 29 36 22 21 29 43 49 18 17 29 37 40 17 43 49 4 39 49 22 29\nGRGGGGBRBRRGGRGBRGBBGRBRRGBBRRBBBGRBBBBGRGGRRBRG\n", "50 49 1000\n30 37 34 31 26 44 32 12 36 15 5 5 31 24 17 24 43 19 17 23 45 2 31 17 23 48 20 44 46 44 13 4 29 49 33 41 14 25 46 43 7 47 28 25 2 30 37 37 19 32\nGBBBRBGRBRBRGRGRBBGBGRRBGGRBGRBRRRRRRRBRGRGGGGBRGG\n", "6 1 21\n4 2 3 2 1 6\nRGBGRB\n", "50 50 1250\n1 3 5 7 9 11 13 15 17 19 21 1 25 27 29 31 33 35 37 39 41 43 45 47 49 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2\nRRRRRRRRRRRRRRRRRRRRRRRRRGGGGGGGGGGGGGGGGGGGGGGGGG\n", "2 1 15\n5 1\nRG\n", "50 39 2000\n48 43 26 24 46 37 15 30 36 34 4 14 29 34 8 18 40 8 17 37 15 29 2 23 41 7 12 13 36 11 24 22 26 46 11 31 1 46 11 35 6 41 16 50 11 1 46 20 46 28\nBGBBBBBBRGGBBBRRRRBBGRGGRBBRBBBRBBBBBRRGBGGRRRBBRB\n", "2 1 15\n5 6\nRG\n", "5 3 10\n1 2 3 4 5\nRGBRR\n"], "outputs": ["4\n", "-1\n", "15\n", "10\n", "0\n", "-1\n", "-1\n", "2\n", "7\n", "-1\n", "-1\n", "185\n", "86\n", "23\n", "992\n", "20\n", "24\n", "39\n", "64\n", "63\n", "-1\n", "20\n", "-1\n", "185\n", "39\n", "0\n", "7\n", "2\n", "10\n", "-1\n", "-1\n", "-1\n", "63\n", "64\n", "24\n", "-1\n", "23\n", "15\n", "86\n", "992", "-1\n", "39\n", "3\n", "2\n", "63\n", "24\n", "86\n", "31\n", "20\n", "5\n", "4\n", "28\n", "23\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "39\n", "3\n", "-1\n", "-1\n", "-1\n", "-1\n", "3\n", "-1\n", "31\n", "-1\n", "-1\n", "-1\n", "3\n", "-1\n", "-1\n", "-1\n", "3\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "39\n", "-1\n", "-1\n", "-1\n", "-1\n", "63\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "4\n"]}
HARD
[ "PYTHON3" ]
CODEFORCES
7,703
BAAI/TACO
4e178f196c8c3a9c4b7ebff6121ef1b8
UNKNOWN
Little Petya likes to play a lot. Most of all he likes to play a game «Holes». This is a game for one person with following rules: There are N holes located in a single row and numbered from left to right with numbers from 1 to N. Each hole has it's own power (hole number i has the power ai). If you throw a ball into hole i it will immediately jump to hole i + ai, then it will jump out of it and so on. If there is no hole with such number, the ball will just jump out of the row. On each of the M moves the player can perform one of two actions: * Set the power of the hole a to value b. * Throw a ball into the hole a and count the number of jumps of a ball before it jump out of the row and also write down the number of the hole from which it jumped out just before leaving the row. Petya is not good at math, so, as you have already guessed, you are to perform all computations. Input The first line contains two integers N and M (1 ≤ N ≤ 105, 1 ≤ M ≤ 105) — the number of holes in a row and the number of moves. The second line contains N positive integers not exceeding N — initial values of holes power. The following M lines describe moves made by Petya. Each of these line can be one of the two types: * 0 a b * 1 a Type 0 means that it is required to set the power of hole a to b, and type 1 means that it is required to throw a ball into the a-th hole. Numbers a and b are positive integers do not exceeding N. Output For each move of the type 1 output two space-separated numbers on a separate line — the number of the last hole the ball visited before leaving the row and the number of jumps it made. Examples Input 8 5 1 1 1 1 1 2 8 2 1 1 0 1 3 1 1 0 3 4 1 2 Output 8 7 8 5 7 3
{"inputs": ["10 10\n5 1 2 4 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "8 5\n1 1 1 1 1 1 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 1 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 3\n", "10 10\n5 1 2 8 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 7 3 8 10 8\n0 8 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "8 5\n2 1 1 1 1 1 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "8 5\n2 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 2\n1 1\n0 1 4\n1 2\n", "8 5\n1 1 1 1 2 2 4 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "10 10\n5 1 2 8 1 7 3 8 10 8\n0 8 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 3\n0 6 1\n1 9\n1 1\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 1 4\n1 4\n", "8 5\n1 1 1 1 1 4 11 2\n1 1\n0 1 5\n1 1\n0 1 7\n1 2\n", "10 10\n5 1 2 8 1 12 3 14 10 8\n0 4 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n2 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "10 10\n7 1 2 16 1 12 3 10 10 16\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n1 1 1 2 1 2 11 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 1\n", "8 5\n1 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 1\n", "10 10\n5 1 2 8 1 6 3 8 10 8\n0 8 2\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 3\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 6 3 8 10 8\n0 8 2\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 1\n0 6 1\n1 9\n1 1\n", "8 5\n1 2 1 1 1 2 8 6\n1 1\n0 1 3\n1 1\n0 3 4\n1 1\n", "8 5\n1 1 1 1 1 1 8 2\n1 1\n0 1 3\n1 1\n0 3 3\n1 2\n", "10 10\n5 1 2 8 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 6\n1 2\n0 6 1\n1 9\n1 1\n", "8 5\n2 1 1 1 1 1 8 2\n1 1\n0 1 3\n1 1\n0 3 1\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 1\n0 1 5\n1 1\n0 1 7\n1 2\n", "10 10\n5 1 2 8 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 12 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 12 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n1 1 1 1 1 2 4 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "10 10\n5 1 2 8 1 12 3 14 10 16\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n2 1 1 1 1 2 11 1\n1 1\n0 1 5\n1 1\n0 3 4\n1 2\n", "10 10\n5 1 2 8 1 12 3 10 10 16\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 16 1 12 3 10 10 16\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 4 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 2\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 15 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "8 5\n1 1 1 2 1 1 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 2 1 2 11 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 2\n", "8 5\n1 1 1 1 1 2 11 2\n1 2\n0 1 5\n1 1\n0 3 4\n1 2\n", "10 10\n5 1 2 15 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 14 3 14 10 16\n0 5 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 6 3 8 10 8\n0 8 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 3\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 4 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 4\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1\n", "10 10\n5 1 2 15 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 5 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 12 3 14 14 8\n0 4 6\n1 8\n1 1\n0 10 6\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "10 10\n5 1 2 8 1 14 3 14 10 16\n0 5 6\n1 8\n1 1\n0 10 7\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n1 1 1 1 1 2 8 3\n1 1\n0 1 3\n1 1\n0 3 4\n1 1\n", "8 5\n1 1 1 1 1 2 8 6\n1 1\n0 1 3\n1 1\n0 3 4\n1 1\n", "8 5\n1 1 1 1 1 2 18 2\n1 1\n0 1 5\n1 1\n0 1 7\n1 2\n", "8 5\n1 1 1 1 1 2 5 2\n1 1\n0 1 5\n1 1\n0 3 4\n1 3\n", "10 10\n5 1 2 6 1 7 3 14 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 4 1\n1 9\n1 1\n", "8 5\n1 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n"], "outputs": ["8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "7 7\n7 5\n7 3\n", "8 7\n8 5\n7 3\n", "8 7\n8 3\n7 3\n", "8 7\n8 3\n8 6\n", "8 7\n8 3\n7 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n6 2\n6 3\n6 4\n9 1\n10 4\n", "7 6\n7 5\n7 3\n", "8 6\n8 3\n7 3\n", "8 7\n8 6\n8 6\n", "7 6\n7 4\n7 3\n", "8 1\n6 2\n6 2\n6 3\n6 3\n9 1\n10 4\n", "8 7\n8 3\n8 4\n", "6 6\n6 2\n6 5\n", "8 1\n6 2\n6 2\n6 3\n6 4\n9 1\n6 2\n", "8 6\n8 5\n7 3\n", "8 1\n8 2\n5 1\n5 2\n5 3\n9 1\n8 2\n", "8 6\n8 3\n8 3\n", "8 7\n8 5\n8 5\n", "10 2\n6 2\n6 2\n6 3\n6 3\n9 1\n10 4\n", "10 2\n6 2\n6 2\n6 3\n6 2\n9 1\n10 4\n", "8 6\n8 5\n8 5\n", "7 7\n7 5\n7 4\n", "8 1\n6 2\n5 1\n6 1\n5 3\n9 1\n10 4\n", "7 6\n7 5\n7 6\n", "8 7\n8 3\n8 6\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 7\n8 5\n7 3\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 6\n8 3\n7 3\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "7 6\n7 4\n7 3\n", "8 6\n8 3\n7 3\n", "8 6\n8 3\n7 3\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n6 2\n6 3\n6 3\n9 1\n10 4\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 1\n6 2\n6 2\n6 3\n6 4\n9 1\n6 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 7\n8 5\n8 5\n", "8 7\n8 5\n8 5\n", "8 7\n8 3\n8 6\n", "8 7\n8 3\n7 2\n", "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n6 2\n", "8 7\n8 5\n7 3\n"]}
VERY_HARD
[ "PYTHON3" ]
CODEFORCES
2
BAAI/TACO
07cfb7284bc4b16ef707dca90a4ae19b
Ciel and Flowers
Fox Ciel has some flowers: *r* red flowers, *g* green flowers and *b* blue flowers. She wants to use these flowers to make several bouquets. There are 4 types of bouquets: - To make a "red bouquet", it needs 3 red flowers. - To make a "green bouquet", it needs 3 green flowers. - To make a "blue bouquet", it needs 3 blue flowers. - To make a "mixing bouquet", it needs 1 red, 1 green and 1 blue flower. Help Fox Ciel to find the maximal number of bouquets she can make. The first line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=109) — the number of red, green and blue flowers. Print the maximal number of bouquets Fox Ciel can make. Sample Input 3 6 9 4 4 4 0 0 0 Sample Output 6 4 0
{"inputs": ["3 6 9", "4 4 4", "0 0 0", "0 3 6", "7 8 9", "8 8 9", "15 3 999", "32 62 92", "123456789 123456789 123456789", "3 5 5", "666806767 385540591 357848286", "80010646 727118126 817880463", "829651016 732259171 572879931", "242854896 442432924 180395753", "139978911 5123031 935395222", "553182792 10264076 395427398", "597790453 720437830 855459575", "494914467 356982656 757942689", "908118348 67156409 217974865", "952726009 629846517 972974334", "775140200 616574841 630329230", "524780569 326748594 90361407", "937984449 184405994 992844522", "835108464 525983528 452876698", "879716125 531124573 207876166", "292920005 241298326 667908343", "1000000000 1000000000 1000000000", "1000000000 999999999 999999998", "999999998 999999998 999999999", "0 1 1", "0 1000000000 0", "0 1 0", "1 0 0", "0 2 2", "3 3 5", "2 2 0", "0 5 5", "2 0 11", "9 9 7", "65 30 74"], "outputs": ["6", "4", "0", "3", "7", "8", "339", "62", "123456789", "4", "470065214", "541669744", "711596705", "288561190", "360165721", "319624755", "724562619", "536613270", "397749873", "851848953", "674014756", "313963523", "705078321", "604656229", "539572288", "400708891", "1000000000", "999999998", "999999998", "0", "333333333", "0", "0", "0", "3", "0", "2", "3", "8", "56"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
MatrixStudio/Codeforces-Python-Submissions
45986d9ec9e10c4ae93d52ad9184357c
Uncowed Forces
Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score. Codeforces scores are computed as follows: If the maximum point value of a problem is *x*, and Kevin submitted correctly at minute *m* but made *w* wrong submissions, then his score on that problem is . His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack. All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer. The first line of the input contains five space-separated integers *m*1, *m*2, *m*3, *m*4, *m*5, where *m**i* (0<=≤<=*m**i*<=≤<=119) is the time of Kevin's last submission for problem *i*. His last submission is always correct and gets accepted. The second line contains five space-separated integers *w*1, *w*2, *w*3, *w*4, *w*5, where *w**i* (0<=≤<=*w**i*<=≤<=10) is Kevin's number of wrong submissions on problem *i*. The last line contains two space-separated integers *h**s* and *h**u* (0<=≤<=*h**s*,<=*h**u*<=≤<=20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively. Print a single integer, the value of Kevin's final score. Sample Input 20 40 60 80 100 0 1 2 3 4 1 0 119 119 119 119 119 0 0 0 0 0 10 0 Sample Output 4900 4930
{"inputs": ["20 40 60 80 100\n0 1 2 3 4\n1 0", "119 119 119 119 119\n0 0 0 0 0\n10 0", "3 6 13 38 60\n6 10 10 3 8\n9 9", "21 44 11 68 75\n6 2 4 8 4\n2 8", "16 112 50 114 68\n1 4 8 4 9\n19 11", "55 66 75 44 47\n6 0 6 6 10\n19 0", "47 11 88 5 110\n6 10 4 2 3\n10 6", "5 44 61 103 92\n9 0 10 4 8\n15 7", "115 53 96 62 110\n7 8 1 7 9\n7 16", "102 83 26 6 11\n3 4 1 8 3\n17 14", "36 102 73 101 19\n5 9 2 2 6\n4 13", "40 115 93 107 113\n5 7 2 6 8\n6 17", "53 34 53 107 81\n4 3 1 10 8\n7 7", "113 37 4 84 66\n2 0 10 3 0\n20 19", "10 53 101 62 1\n8 0 9 7 9\n0 11", "45 45 75 36 76\n6 2 2 0 0\n8 17", "47 16 44 78 111\n7 9 8 0 2\n1 19", "7 54 39 102 31\n6 0 2 10 1\n18 3", "0 46 86 72 40\n1 5 5 5 9\n6 5", "114 4 45 78 113\n0 4 8 10 2\n10 12", "56 56 96 105 107\n4 9 10 4 8\n2 1", "113 107 59 50 56\n3 7 10 6 3\n10 12", "96 104 9 94 84\n6 10 7 8 3\n14 11", "98 15 116 43 55\n4 3 0 9 3\n10 7", "0 26 99 108 35\n0 4 3 0 10\n9 5", "89 24 51 49 84\n5 6 2 2 9\n2 14", "57 51 76 45 96\n1 0 4 3 6\n12 15", "79 112 37 36 116\n2 8 4 7 5\n4 12", "71 42 60 20 7\n7 1 1 10 6\n1 7", "86 10 66 80 55\n0 2 5 10 5\n15 6", "66 109 22 22 62\n3 1 5 4 5\n10 5", "97 17 43 84 58\n2 8 3 8 6\n10 7", "109 83 5 114 104\n6 0 3 9 5\n5 2", "94 18 24 91 105\n2 0 7 10 3\n1 4", "64 17 86 59 45\n8 0 10 2 2\n4 4", "70 84 31 57 2\n7 0 0 2 7\n12 5", "98 118 117 86 4\n2 10 9 7 5\n11 15", "103 110 101 97 70\n4 2 1 0 5\n7 5", "78 96 6 97 62\n7 7 9 2 9\n10 3", "95 28 3 31 115\n1 9 0 7 3\n10 13", "45 17 116 58 3\n8 8 7 6 4\n3 19", "19 12 0 113 77\n3 0 10 9 2\n8 6", "0 0 0 0 0\n0 0 0 0 0\n0 0", "0 0 0 0 0\n0 0 0 0 0\n20 0", "119 119 119 119 119\n10 10 10 10 10\n0 20", "0 0 0 0 0\n10 10 10 10 10\n0 20", "119 0 0 0 0\n10 0 0 0 0\n5 5", "0 119 0 0 0\n0 10 0 0 0\n5 5", "0 0 119 0 0\n0 0 10 0 0\n0 0", "0 0 0 119 0\n0 0 0 10 0\n5 5", "0 0 0 0 119\n0 0 0 0 10\n5 5", "119 0 0 0 0\n2 0 0 0 0\n5 5", "0 119 0 0 0\n0 2 0 0 0\n5 5", "0 0 119 0 0\n0 0 2 0 0\n5 5", "0 0 0 119 0\n0 0 0 2 0\n5 5", "0 0 0 0 119\n0 0 0 0 2\n5 5", "119 0 0 0 0\n0 0 0 0 0\n4 9"], "outputs": ["4900", "4930", "5088", "4522", "5178", "6414", "5188", "4914", "3416", "6704", "4292", "2876", "4324", "6070", "4032", "5222", "3288", "6610", "4924", "4432", "3104", "4586", "4754", "5400", "5388", "4066", "5156", "3872", "5242", "5802", "5854", "5028", "4386", "4118", "5144", "6652", "4476", "4678", "4868", "5132", "3992", "5040", "7500", "9500", "1310", "4150", "7400", "7050", "6450", "6350", "6060", "7412", "7174", "6936", "6698", "6460", "7212"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
MatrixStudio/Codeforces-Python-Submissions
46daac6efffe7aaf48972ca9d1a4c15c
Word Capitalization
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged. A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103. Output the given word after capitalization. Sample Input ApPLe konjac Sample Output ApPLe Konjac
{"inputs": ["ApPLe", "konjac", "a", "A", "z", "ABACABA", "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX", "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO", "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD", "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW", "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL", "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC", "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN", "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE", "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP", "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG", "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV", "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI", "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX", "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ", "P", "Xyzzy", "Zzz", "Zp"], "outputs": ["ApPLe", "Konjac", "A", "A", "Z", "ABACABA", "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX", "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO", "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD", "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW", "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL", "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC", "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN", "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE", "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP", "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG", "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV", "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI", "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX", "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ", "P", "Xyzzy", "Zzz", "Zp"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
MatrixStudio/Codeforces-Python-Submissions
README.md exists but content is empty.
Downloads last month
1