Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
id
stringlengths
9
13
iso3
stringlengths
3
6
audio
audioduration (s)
8
3.15k
saq_122440
saq
mhy_203687
mhy
tqo_96392
tqo
beu_197939
beu
wed_09346
wed
uzn_13639
uzn
nti_07800
nti
seh_33266
seh
bkx_152219
bkx
djr_190495
djr
hin_110647
hin
ilo_91184
ilo
kfv_77404
kfv
itr_218265
itr
kls_136704
kls
duc_14402
duc
bis_61291
bis
nos_52311
nos
mhi_80086
mhi
bxh_17571
bxh
smn_143514
smn
nij_97831
nij
cnk_00383
cnk
wme_140112
wme
ghe_37327
ghe
bgr_15677
bgr
bgr_15573
bgr
nyy_69719
nyy
lis_12689
lis
krw_100325
krw
box_184633
box
wog_204036
wog
aks_77786
aks
kqf_127868
kqf
kbx_198425
kbx
mgp_53490
mgp
clo_34910
clo
kua_49452
kua
mzw_94667
mzw
tel_214728
tel
xsm_220299
xsm
esg_05386
esg
vie_84282
vie
nhu_184769
nhu
beu_197954
beu
nan_134944
nan
xtd_28856
xtd
umb_192825
umb
suk_157552
suk
aix_101409
aix
amb_44996
amb
snd_184590
snd
kjl_76731
kjl
apc_180255
apc
som_100445
som
tzo_34032
tzo
wew_44671
wew
nbq_115265
nbq
lek_184091
lek
mki_13999
mki
lin_36256
lin
tke_123124
tke
adx_70660
adx
aui_40248
aui
dus_80228
dus
kfy_189825
kfy
isn_162523
isn
psw_44535
psw
knt_52234
knt
jra_188660
jra
<unk>_72700
<unk>
khq_92616
khq
bzf_99537
bzf
xri_117021
xri
kjl_76752
kjl
fra_161051
fra
sin_204262
sin
her_23198
her
bvc_73215
bvc
fuc_111519
fuc
kfx_117156
kfx
knx_45380
knx
apd_137383
apd
khe_92903
khe
hau_136375
hau
djr_190362
djr
new_195199
new
Zambia_35605
Zambia
pcg_44589
pcg
sin_204330
sin
kgr_21880
kgr
kde_46116
kde
guh_207970
guh
isn_162554
isn
jmx_16433
jmx
ign_81111
ign
kof_86571
kof
fub_214937
fub
syl_116730
syl
gaz_59109
gaz

MMS ulab v2 is a a massively multilingual speech dataset that contains 8900 hours of unlabeled speech across 4023 languages. In total, it contains 189 language families. It can be used for language identification, spoken language modelling, or speech representation learning.

MMS ulab v2 is a reproduced and extended version of the MMS ulab dataset originally proposed in Scaling Speech Technology to 1000+ Languages, covering more languages and containing more data. This dataset includes the raw unsegmented audio in a 16kHz single channel format. It can be segmented into utterances with a voice activity detection (VAD) model such as this one. We use 6700 hours of MMS ulab v2 (post-segmentation) to train XEUS, a multilingual speech encoder for 4000+ languages.

For more details about the dataset and its usage, please refer to our paper or project page.

License and Acknowledgement

MMS ulab v2 is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license.

If you use this dataset, we ask that you cite the following papers:

@misc{chen2024robustspeechrepresentationlearning,
      title={Towards Robust Speech Representation Learning for Thousands of Languages}, 
      author={William Chen and Wangyou Zhang and Yifan Peng and Xinjian Li and Jinchuan Tian and Jiatong Shi and Xuankai Chang and Soumi Maiti and Karen Livescu and Shinji Watanabe},
      year={2024},
      eprint={2407.00837},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.00837}, 
}

@article{pratap2024scaling,
  title={Scaling speech technology to 1,000+ languages},
  author={Pratap, Vineel and Tjandra, Andros and Shi, Bowen and Tomasello, Paden and Babu, Arun and Kundu, Sayani and Elkahky, Ali and Ni, Zhaoheng and Vyas, Apoorv and Fazel-Zarandi, Maryam and others},
  journal={Journal of Machine Learning Research},
  volume={25},
  number={97},
  pages={1--52},
  year={2024}
}

And also reference The Global Recordings Network, the original source of the data.

Downloads last month
538

Models trained or fine-tuned on espnet/mms_ulab_v2