super-emotion / README.md
cirimus's picture
Update README.md
2773de8 verified
|
raw
history blame
2.69 kB
metadata
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: string
    - name: source
      dtype: string
  splits:
    - name: train
      num_bytes: 47692421
      num_examples: 412059
    - name: validation
      num_bytes: 5943141
      num_examples: 51443
    - name: test
      num_bytes: 6478964
      num_examples: 56310
  download_size: 32330824
  dataset_size: 60114526
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
tags:
  - text-classification
  - emotion
  - multi-label
  - crowdsourced
license: cc-by-4.0
task_categories:
  - text-classification
language:
  - en
pretty_name: Super Emotion
size_categories:
  - 100K<n<1M

Super Emotion Dataset

Dataset Summary

The Super Emotion Dataset is a large-scale dataset for emotion classification, aggregated from multiple sources:

It contains 519,812 total samples, respecting original train/validation/test splits where possible. It supports 7 emotion categories which had maximum support in the aggregation: joy, sadness, anger, fear, love, neutral, surprise. Note that we merged some categories to this end (happiness and joy, hate and anger, grief and sadness).

Supported Tasks

This dataset is designed for emotion classification and can be used for:

  • Single-label classification
  • Multi-label emotion recognition
  • Fine-tuning language models

Dataset Structure

The dataset follows the structure:

Column Type Description
text string The input text
label string The assigned emotion label
source string The original dataset

Splits:

  • Train: 412,059 samples
  • Validation: 51,443 samples
  • Test: 56,310 samples

Citation

If you use this dataset, please cite the original sources (Crowdflower 2016, Elvis et al. 2018, Demszky et al. 2020, Vikash 2018, Poria et al. 2019, EI-reg Mohammad et al. 2018) as well as:

@inproceedings{JdFE2025d,
  title = {The Super Emotion Dataset},
  author = {Enric Junqu\'e de Fortuny},
  year = {2025},
  howpublished = {\url{https://huggingface.co/cirimus/super-emotion}},
}