metadata
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 47692421
num_examples: 412059
- name: validation
num_bytes: 5943141
num_examples: 51443
- name: test
num_bytes: 6478964
num_examples: 56310
download_size: 32330824
dataset_size: 60114526
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- text-classification
- emotion
- multi-label
- crowdsourced
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
pretty_name: Super Emotion
size_categories:
- 100K<n<1M
Super Emotion Dataset
Dataset Summary
The Super Emotion Dataset is a large-scale dataset for emotion classification, aggregated from multiple sources:
It contains 519,812 total samples, respecting original train/validation/test splits where possible. It supports 7 emotion categories which had maximum support in the aggregation: joy, sadness, anger, fear, love, neutral, surprise
. Note that we merged some categories to this end (happiness and joy, hate and anger, grief and sadness).
Supported Tasks
This dataset is designed for emotion classification and can be used for:
- Single-label classification
- Multi-label emotion recognition
- Fine-tuning language models
Dataset Structure
The dataset follows the structure:
Column | Type | Description |
---|---|---|
text | string | The input text |
label | string | The assigned emotion label |
source | string | The original dataset |
Splits:
- Train: 412,059 samples
- Validation: 51,443 samples
- Test: 56,310 samples
Citation
If you use this dataset, please cite the original sources (Crowdflower 2016, Elvis et al. 2018, Demszky et al. 2020, Vikash 2018, Poria et al. 2019, EI-reg Mohammad et al. 2018) as well as:
@inproceedings{JdFE2025d,
title = {The Super Emotion Dataset},
author = {Enric Junqu\'e de Fortuny},
year = {2025},
howpublished = {\url{https://huggingface.co/cirimus/super-emotion}},
}