ColonCancerCTDataset / ColonCancerCTDatasetScript.py
YuxuanZhang888's picture
Updated the 'example' and 'full_data' configuration.
3cda685 verified
raw
history blame
6.53 kB
import pydicom
from PIL import Image
import numpy as np
import io
import datasets
import gdown
import re
import s3fs
import random
example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
fs = s3fs.S3FileSystem(anon=True)
_DESCRIPTION = "This is the description"
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
]
DEFAULT_CONFIG_NAME = "example"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"ImageType": datasets.Sequence(datasets.Value('string')),
"StudyDate": datasets.Value('string'),
"SeriesDate": datasets.Value('string'),
"Manufacturer": datasets.Value('string'),
"StudyDescription": datasets.Value('string'),
"SeriesDescription": datasets.Value('string'),
"PatientSex": datasets.Value('string'),
"PatientAge": datasets.Value('string'),
"PregnancyStatus": datasets.Value('string'),
"BodyPartExamined": datasets.Value('string'),
}),
homepage = _HOMEPAGE,
license = _LICENSE,
citation = _CITATION
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
s3_series_paths = []
s3_individual_paths = []
if self.config.name == 'example':
manifest_file = example_manifest_file
else:
manifest_file = full_manifest_file
with open(manifest_file, 'r') as file:
for line in file:
match = re.search(r'cp (s3://[\S]+) .', line)
if match:
s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
for series in s3_series_paths:
for content in fs.ls(series):
s3_individual_paths.append(fs.info(content)['Key'])
random.shuffle(s3_individual_paths)
# Define the split sizes
train_size = int(0.7 * len(s3_individual_paths))
val_size = int(0.15 * len(s3_individual_paths))
# Split the paths into train, validation, and test sets
train_paths = s3_individual_paths[:train_size]
val_paths = s3_individual_paths[train_size:train_size + val_size]
test_paths = s3_individual_paths[train_size + val_size:]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"paths": train_paths,
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"paths": val_paths,
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"paths": test_paths,
"split": "test"
},
),
]
def _generate_examples(self, paths, split):
"""Yields examples."""
# TODO: This method will yield examples, i.e. rows in the dataset.
for path in paths:
key = path
with fs.open(path, 'rb') as f:
dicom_data = pydicom.dcmread(f)
pixel_array = dicom_data.pixel_array
# Adjust for MONOCHROME1 to invert the grayscale values
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
pixel_array = np.max(pixel_array) - pixel_array
# Normalize or scale 16-bit or other depth images to 8-bit
if pixel_array.dtype != np.uint8:
pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
# Convert to RGB if it is not already (e.g., for color images)
if len(pixel_array.shape) == 2:
im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale
elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
im = Image.fromarray(pixel_array, mode="RGB")
else:
raise ValueError("Unsupported DICOM image format")
with io.BytesIO() as output:
im.save(output, format="PNG")
png_image = output.getvalue()
# Extracting metadata
ImageType = dicom_data.get("ImageType", "")
StudyDate = dicom_data.get("StudyDate", "")
SeriesDate = dicom_data.get("SeriesDate", "")
Manufacturer = dicom_data.get("Manufacturer", "")
StudyDescription = dicom_data.get("StudyDescription", "")
SeriesDescription = dicom_data.get("SeriesDescription", "")
PatientSex = dicom_data.get("PatientSex", "")
PatientAge = dicom_data.get("PatientAge", "")
PregnancyStatus = dicom_data.get("PregnancyStatus", "")
if PregnancyStatus == None:
PregnancyStatus = "None"
else:
PregnancyStatus = "Yes"
BodyPartExamined = dicom_data.get("BodyPartExamined", "")
yield key, {"image": png_image,
"ImageType": ImageType,
"StudyDate": StudyDate,
"SeriesDate": SeriesDate,
"Manufacturer": Manufacturer,
"StudyDescription": StudyDescription,
"SeriesDescription": SeriesDescription,
"PatientSex": PatientSex,
"PatientAge": PatientAge,
"PregnancyStatus": PregnancyStatus,
"BodyPartExamined": BodyPartExamined}