Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
100B<n<1T
License:
Updated the 'example' and 'full_data' configuration.
Browse files- ColonCancerCTDatasetScript.py +30 -43
ColonCancerCTDatasetScript.py
CHANGED
@@ -8,46 +8,29 @@ import re
|
|
8 |
import s3fs
|
9 |
import random
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
fs = s3fs.S3FileSystem(anon=True)
|
14 |
|
15 |
-
_DESCRIPTION = ""
|
16 |
-
This dataset, curated from the comprehensive collection by the National Cancer Institute (NCI)
|
17 |
-
and hosted on AWS, contains over 900,000 colon CT images, along with the corresponding patients'
|
18 |
-
information. It is designed to help researcher in developing advanced machine learning models
|
19 |
-
for in-depth studies in colon cancer.
|
20 |
-
"""
|
21 |
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
|
22 |
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
|
23 |
-
_CITATION = ""
|
24 |
-
|
25 |
-
title={NCI imaging data commons},
|
26 |
-
author={Fedorov, Andrey and Longabaugh, William JR and Pot, David
|
27 |
-
and Clunie, David A and Pieper, Steve and Aerts, Hugo JWL and
|
28 |
-
Homeyer, Andr{\'e} and Lewis, Rob and Akbarzadeh, Afshin and
|
29 |
-
Bontempi, Dennis and others},
|
30 |
-
journal={Cancer research},
|
31 |
-
volume={81},
|
32 |
-
number={16},
|
33 |
-
pages={4188--4193},
|
34 |
-
year={2021},
|
35 |
-
publisher={AACR}
|
36 |
-
}
|
37 |
-
"""
|
38 |
|
39 |
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
40 |
-
"""
|
41 |
-
homepage. The file lists the S3 paths for each series of CT images and metadata, guiding the download
|
42 |
-
from AWS. After processing the original content, this dataset will contian the image of the colonography,
|
43 |
-
image type, study date, series date, manufacturer details, study descriptions, series descriptions,
|
44 |
-
and patient demographics including sex, age, and pregnancy status.
|
45 |
-
"""
|
46 |
VERSION = datasets.Version("1.1.0")
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def _info(self):
|
49 |
-
"""Returns DatasetInfo."""
|
50 |
-
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
51 |
return datasets.DatasetInfo(
|
52 |
description=_DESCRIPTION,
|
53 |
features=datasets.Features(
|
@@ -67,24 +50,29 @@ class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
|
67 |
homepage = _HOMEPAGE,
|
68 |
license = _LICENSE,
|
69 |
citation = _CITATION
|
70 |
-
|
|
|
71 |
|
72 |
def _split_generators(self, dl_manager):
|
73 |
-
"""Returns
|
74 |
-
# This method is tasked with extracting the
|
75 |
-
# by shuffling and randomly partitioning the paths in the manifest file.
|
76 |
s3_series_paths = []
|
77 |
s3_individual_paths = []
|
|
|
|
|
|
|
|
|
|
|
78 |
with open(manifest_file, 'r') as file:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
for series in s3_series_paths:
|
84 |
for content in fs.ls(series):
|
85 |
-
|
86 |
|
87 |
-
random.shuffle(s3_individual_paths)
|
88 |
|
89 |
# Define the split sizes
|
90 |
train_size = int(0.7 * len(s3_individual_paths))
|
@@ -120,13 +108,12 @@ class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
|
120 |
|
121 |
def _generate_examples(self, paths, split):
|
122 |
"""Yields examples."""
|
123 |
-
# This method will yield examples, i.e. rows in the dataset.
|
124 |
for path in paths:
|
125 |
key = path
|
126 |
with fs.open(path, 'rb') as f:
|
127 |
dicom_data = pydicom.dcmread(f)
|
128 |
pixel_array = dicom_data.pixel_array
|
129 |
-
# Converting pixel array into PNG image
|
130 |
# Adjust for MONOCHROME1 to invert the grayscale values
|
131 |
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
|
132 |
pixel_array = np.max(pixel_array) - pixel_array
|
|
|
8 |
import s3fs
|
9 |
import random
|
10 |
|
11 |
+
example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
|
12 |
+
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
|
13 |
+
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
|
14 |
+
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
|
15 |
fs = s3fs.S3FileSystem(anon=True)
|
16 |
|
17 |
+
_DESCRIPTION = "This is the description"
|
|
|
|
|
|
|
|
|
|
|
18 |
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
|
19 |
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
|
20 |
+
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
|
21 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
24 |
+
"""TODO: Short description of my dataset."""
|
|
|
|
|
|
|
|
|
|
|
25 |
VERSION = datasets.Version("1.1.0")
|
26 |
|
27 |
+
BUILDER_CONFIGS = [
|
28 |
+
datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
|
29 |
+
datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
|
30 |
+
]
|
31 |
+
DEFAULT_CONFIG_NAME = "example"
|
32 |
+
|
33 |
def _info(self):
|
|
|
|
|
34 |
return datasets.DatasetInfo(
|
35 |
description=_DESCRIPTION,
|
36 |
features=datasets.Features(
|
|
|
50 |
homepage = _HOMEPAGE,
|
51 |
license = _LICENSE,
|
52 |
citation = _CITATION
|
53 |
+
|
54 |
+
)
|
55 |
|
56 |
def _split_generators(self, dl_manager):
|
57 |
+
"""Returns SplitGenerators."""
|
58 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
|
|
|
59 |
s3_series_paths = []
|
60 |
s3_individual_paths = []
|
61 |
+
if self.config.name == 'example':
|
62 |
+
manifest_file = example_manifest_file
|
63 |
+
else:
|
64 |
+
manifest_file = full_manifest_file
|
65 |
+
|
66 |
with open(manifest_file, 'r') as file:
|
67 |
+
for line in file:
|
68 |
+
match = re.search(r'cp (s3://[\S]+) .', line)
|
69 |
+
if match:
|
70 |
+
s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
|
71 |
for series in s3_series_paths:
|
72 |
for content in fs.ls(series):
|
73 |
+
s3_individual_paths.append(fs.info(content)['Key'])
|
74 |
|
75 |
+
random.shuffle(s3_individual_paths)
|
76 |
|
77 |
# Define the split sizes
|
78 |
train_size = int(0.7 * len(s3_individual_paths))
|
|
|
108 |
|
109 |
def _generate_examples(self, paths, split):
|
110 |
"""Yields examples."""
|
111 |
+
# TODO: This method will yield examples, i.e. rows in the dataset.
|
112 |
for path in paths:
|
113 |
key = path
|
114 |
with fs.open(path, 'rb') as f:
|
115 |
dicom_data = pydicom.dcmread(f)
|
116 |
pixel_array = dicom_data.pixel_array
|
|
|
117 |
# Adjust for MONOCHROME1 to invert the grayscale values
|
118 |
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
|
119 |
pixel_array = np.max(pixel_array) - pixel_array
|