metadata
size_categories:
- 1M<n<10M
Danbooru TFRecords to train classifiers and other stuff with my codebases.
TFRecord serialization/deserialization code:
NUM_CLASSES = 12511
# Function to convert value to bytes_list
def _bytes_feature(value):
if isinstance(value, type(tf.constant(0))):
value = value.numpy()
elif isinstance(value, str):
value = value.encode()
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# Function to convert bool/enum/int/uint to int64_list
def _int64_feature(value):
int64_list = tf.train.Int64List(value=tf.reshape(value, (-1,)))
return tf.train.Feature(int64_list=int64_list)
# Function to create a tf.train.Example message
def serialize_example(image_id, image_bytes, label_indexes, tag_string):
feature = {
"image_id": _int64_feature(image_id),
"image_bytes": _bytes_feature(image_bytes),
"label_indexes": _int64_feature(label_indexes),
"tag_string": _bytes_feature(tag_string),
}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
# Function to deserialize a single tf.train.Example message
def deserialize_example(example_proto):
feature_description = {
"image_id": tf.io.FixedLenFeature([], tf.int64),
"image_bytes": tf.io.FixedLenFeature([], tf.string),
"label_indexes": tf.io.VarLenFeature(tf.int64),
"tag_string": tf.io.FixedLenFeature([], tf.string),
}
# Parse the input 'tf.train.Example' proto using the dictionary above.
parsed_example = tf.io.parse_single_example(example_proto, feature_description)
image_tensor = tf.io.decode_jpeg(parsed_example["image_bytes"], channels=3)
# We only stored label indexes in the TFRecords to save space
# Emulate MultiLabelBinarizer to get a tensor of 0s and 1s
label_indexes = tf.sparse.to_dense(
parsed_example["label_indexes"],
default_value=0,
)
one_hots = tf.one_hot(label_indexes, NUM_CLASSES)
labels = tf.reduce_max(one_hots, axis=0)
labels = tf.cast(labels, tf.float32)
sample = {
"image_ids": parsed_example["image_id"],
"images": image_tensor,
"labels": labels,
"tags": parsed_example["tag_string"],
}
return sample