File size: 13,392 Bytes
b475775 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""\
Data loader implementation for IDENTICv1.0 dataset.
"""
import csv
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from nusacrowd.utils import schemas
from nusacrowd.utils.common_parser import load_ud_data
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{larasati-2012-identic,
title = "{IDENTIC} Corpus: Morphologically Enriched {I}ndonesian-{E}nglish Parallel Corpus",
author = "Larasati, Septina Dian",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/644_Paper.pdf",
pages = "902--906",
abstract = "This paper describes the creation process of an Indonesian-English parallel corpus (IDENTIC).
The corpus contains 45,000 sentences collected from different sources in different genres.
Several manual text preprocessing tasks, such as alignment and spelling correction, are applied to the corpus
to assure its quality. We also apply language specific text processing such as tokenization on both sides and
clitic normalization on the Indonesian side. The corpus is available in two different formats: plain',
stored in text format and morphologically enriched', stored in CoNLL format. Some parts of the corpus are
publicly available at the IDENTIC homepage.",
}
"""
_DATASETNAME = "identic"
_DESCRIPTION = """\
IDENTIC is an Indonesian-English parallel corpus for research purposes.
The corpus is a bilingual corpus paired with English. The aim of this work is to build and provide
researchers a proper Indonesian-English textual data set and also to promote research in this language pair.
The corpus contains texts coming from different sources with different genres.
Additionally, the corpus contains tagged texts that follows MorphInd tagset (Larasati et. al., 2011).
"""
_HOMEPAGE = "https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0005-BF85-F"
_LICENSE = "CC BY-NC-SA 3.0"
_URLS = {
_DATASETNAME: "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11858/00-097C-0000-0005-BF85-F/IDENTICv1.0.zip?sequence=1&isAllowed=y",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION, Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
_LANGUAGES = ["ind", "eng"]
_LOCAL = False
SOURCE_VARIATION = ["raw", "tokenized", "noclitic"]
tagsets_map = {
# ind
"07<c>_CO-$": "CO-",
"176<c>_CO-$": "CO-",
"F--.^com.<f>_F--$": "X--",
"F--.^xi<x>_X--$.^b<x>_X--$.^2.<c>_CC-$": "X--",
"X--.^0.<c>_CC-$": "X--",
"X--.^a.<x>_X--$": "X--",
"X--.^b.<x>_X--$": "X--",
"X--.^c.<x>_X--$": "X--",
"X--.^com.<f>_F--$": "X--",
"X--.^gammima<x>_X--$.^ag.<f>_F--$": "X--",
"X--.^h.<x>_X--$": "X--",
"X--.^i.<x>_X--$": "X--",
"X--.^j.<x>_X--$": "X--",
"X--.^m.<f>_F--$": "X--",
"X--.^n.<x>_X--$": "X--",
"X--.^net.<x>_X--$": "X--",
"X--.^okezone<x>_X--$.^com.<f>_F--$": "X--",
"X--.^p<x>_X--$.^k.<x>_X--$": "X--",
"X--.^r.<x>_X--$": "X--",
"X--.^s.<x>_X--$": "X--",
"X--.^w.<x>_X--$": "D--",
"^ke+dua": "D--",
"^ke+p": "D--",
"^nya$": "D--",
"duanya<c>_CO-$": "CO-",
}
def nusantara_config_constructor(version, variation=None, task="source", lang="id"):
if variation not in SOURCE_VARIATION:
raise NotImplementedError("'{var}' is not available".format(var=variation))
ver = datasets.Version(version)
if task == "seq_label":
return NusantaraConfig(
name="identic_{lang}_nusantara_seq_label".format(lang=lang),
version=ver,
description="IDENTIC {lang} source schema".format(lang=lang),
schema="nusantara_seq_label",
subset_id="identic",
)
else:
return NusantaraConfig(
name="identic_{var}_{task}".format(var=variation, task=task),
version=ver,
description="IDENTIC {var} source schema".format(var=variation),
schema=task,
subset_id="identic",
)
def load_ud_data_as_pos_tag(filepath, lang):
dataset_source = list(load_ud_data(filepath))
if lang == "id":
return [{"id": str(i + 1), "tokens": row["form"], "labels": [tagsets_map.get(pos_tag, pos_tag) for pos_tag in row["xpos"]]} for (i, row) in enumerate(dataset_source)]
else:
return [{"id": str(i + 1), "tokens": row["form"], "labels": row["xpos"]} for (i, row) in enumerate(dataset_source)]
class IdenticDataset(datasets.GeneratorBasedBuilder):
"""
IDENTIC is an Indonesian-English parallel corpus for research purposes. This dataset is used for ind -> eng translation and vice versa, as well for POS-Tagging task.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
# Details of the tagsets in https://septinalarasati.com/morphind/
TAGSETS = [
# en
"#",
"$",
"''",
",",
".",
":",
"CC",
"CD",
"DT",
"EX",
"FW",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NN",
"NNP",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB",
"``",
# id
"APP",
"ASP",
"ASS",
"B--",
"CC-",
"CD-",
"CO-",
"D--",
"F--",
"G--",
"H--",
"I--",
"M--",
"NPD",
"NSD",
"NSF",
"NSM",
"O--",
"PP1",
"PP3",
"PS1",
"PS2",
"PS3",
"R--",
"S--",
"T--",
"VPA",
"VPP",
"VSA",
"VSP",
"W--",
"X--",
"Z--",
]
BUILDER_CONFIGS = (
[
NusantaraConfig(
name="identic_source",
version=SOURCE_VERSION,
description="identic source schema",
schema="source",
subset_id="identic",
),
NusantaraConfig(
name="identic_id_source",
version=SOURCE_VERSION,
description="identic source schema",
schema="source",
subset_id="identic",
),
NusantaraConfig(
name="identic_en_source",
version=SOURCE_VERSION,
description="identic source schema",
schema="source",
subset_id="identic",
),
NusantaraConfig(
name="identic_nusantara_t2t",
version=NUSANTARA_VERSION,
description="Identic Nusantara schema",
schema="nusantara_t2t",
subset_id="identic",
),
NusantaraConfig(
name="identic_nusantara_seq_label",
version=NUSANTARA_VERSION,
description="Identic Nusantara schema",
schema="nusantara_seq_label",
subset_id="identic",
),
]
+ [nusantara_config_constructor(_NUSANTARA_VERSION, var) for var in SOURCE_VARIATION]
+ [nusantara_config_constructor(_NUSANTARA_VERSION, var, "nusantara_t2t") for var in SOURCE_VARIATION]
+ [nusantara_config_constructor(_NUSANTARA_VERSION, "raw", task="seq_label", lang=lang) for lang in ["en", "id"]]
)
DEFAULT_CONFIG_NAME = "identic_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if self.config.name.endswith("id_source") or self.config.name.endswith("en_source"):
features = datasets.Features(
{
"id": [datasets.Value("string")],
"form": [datasets.Value("string")],
"lemma": [datasets.Value("string")],
"upos": [datasets.Value("string")],
"xpos": [datasets.Value("string")],
"feats": [datasets.Value("string")],
"head": [datasets.Value("string")],
"deprel": [datasets.Value("string")],
"deps": [datasets.Value("string")],
"misc": [datasets.Value("string")],
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"id_sentence": datasets.Value("string"),
"en_sentence": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_t2t":
features = schemas.text2text_features
elif self.config.schema == "nusantara_seq_label":
features = schemas.seq_label_features(self.TAGSETS)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
base_dir = dl_manager.download_and_extract(urls)
name_split = self.config.name.split("_")
lang = name_split[1] if name_split[1] in ["en", "id"] else None
if name_split[-1] == "source":
if len(name_split) == 2:
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt"
else:
if name_split[1] in ["en", "id"]:
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt"
else:
data_dir = base_dir + "/IDENTICv1.0/identic.{var}.npp.txt".format(var=name_split[1])
elif name_split[-1] == "t2t":
if len(name_split) == 3:
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt"
else:
data_dir = base_dir + "/IDENTICv1.0/identic.{var}.npp.txt".format(var=name_split[1])
elif name_split[-1] == "label":
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt"
else:
raise NotImplementedError("The defined task is not implemented")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": Path(data_dir), "split": datasets.Split.TRAIN, "lang": lang},
)
]
def _generate_examples(self, filepath: Path, split: str, lang=None) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = self._load_df_from_tsv(filepath)
if self.config.schema == "source":
if lang is None:
# T2T source
for id, row in df.iterrows():
yield id, {"id": row["id"], "id_sentence": row["id_sentence"], "en_sentence": row["en_sentence"]}
else:
# conll source
path = filepath.parent / "{lang}.npp.conll".format(lang=lang)
for key, example in enumerate(load_ud_data(path)):
yield key, example
elif self.config.schema == "nusantara_t2t":
for id, row in df.iterrows():
yield id, {
"id": str(id),
"text_1": row["id_sentence"],
"text_2": row["en_sentence"],
"text_1_name": "ind",
"text_2_name": "eng",
}
elif self.config.schema == "nusantara_seq_label":
if lang is None:
lang = "id"
path = filepath.parent / "{lang}.npp.conll".format(lang=lang)
for key, example in enumerate(load_ud_data_as_pos_tag(path, lang=lang)):
yield key, example
@staticmethod
def _load_df_from_tsv(path):
return pd.read_csv(
path,
sep="\t",
names=["id", "id_sentence", "en_sentence"],
quoting=csv.QUOTE_NONE,
)
|