|
--- |
|
language: |
|
- es |
|
license: apache-2.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- n<1K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- summarization |
|
pretty_name: NoticIA |
|
dataset_info: |
|
features: |
|
- name: web_url |
|
dtype: string |
|
- name: web_headline |
|
dtype: string |
|
- name: summary |
|
dtype: string |
|
- name: web_text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2494253 |
|
num_examples: 700 |
|
- name: validation |
|
num_bytes: 214922 |
|
num_examples: 50 |
|
- name: test |
|
num_bytes: 358972 |
|
num_examples: 100 |
|
download_size: 1745629 |
|
dataset_size: 3068147 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
tags: |
|
- summarization |
|
- clickbait |
|
- news |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/Iker/NoticIA/resolve/main/assets/logo.png" style="height: 250px;"> |
|
</p> |
|
|
|
<h3 align="center">"A Clickbait Article Summarization Dataset in Spanish."</h3> |
|
|
|
We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. |
|
|
|
- 📖 Paper: [NoticIA: A Clickbait Article Summarization Dataset in Spanish](https://arxiv.org/abs/2404.07611) |
|
- 💻 Baseline Code: [https://github.com/ikergarcia1996/NoticIA](https://github.com/ikergarcia1996/NoticIA) |
|
- 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e) |
|
- 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/) |
|
|
|
|
|
For example, given the following headline and web text: |
|
``` |
|
# ¿Qué pasará el 15 de enero de 2024? |
|
Al parecer, no todo es dulzura en las vacaciones de fin de años, como lo demuestra la nueva intrig.... |
|
``` |
|
The summary is: |
|
``` |
|
Que los estudiantes vuelven a clase. |
|
``` |
|
|
|
|
|
# Data explanation |
|
- **web_url** (int): The URL of the news article |
|
- **web_headline** (str): The headline of the article, which is a Clickbait. |
|
- **web_text** (int): The body of the article. |
|
- **summary** (str): The summary written by humans that answers the clickbait headline. |
|
|
|
# Dataset Description |
|
- **Author:** [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) |
|
- **Author** [Begoña Altuna](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139) |
|
- **Web Page**: [Github](https://github.com/ikergarcia1996/NoticIA) |
|
- **Language(s) (NLP):** Spanish |
|
- **License:** apache-2.0 |
|
|
|
# Dataset Usage |
|
|
|
1. We are working on implementing NoticIA on the Language Model Evaluation Harness library: https://github.com/EleutherAI/lm-evaluation-harness |
|
|
|
2. If you want to train an LLM or reproduce the results in our paper, you can use our code. See the repository for more info: [https://github.com/ikergarcia1996/NoticIA](https://github.com/ikergarcia1996/NoticIA) |
|
|
|
3. If you want to manually load the dataset and run inference with an LLM: |
|
You can load the dataset with the following command: |
|
```Python |
|
from datasets import load_dataset |
|
dataset = load_dataset("Iker/NoticIA") |
|
``` |
|
|
|
In order to perform inference with LLMs, you need to build a prompt. The one we use in our paper is: |
|
```Python |
|
def clickbait_prompt( |
|
headline: str, |
|
body: str, |
|
) -> str: |
|
""" |
|
Generate the prompt for the model. |
|
Args: |
|
headline (`str`): |
|
The headline of the article. |
|
body (`str`): |
|
The body of the article. |
|
Returns: |
|
`str`: The formatted prompt. |
|
""" |
|
return ( |
|
f"Ahora eres una Inteligencia Artificial experta en desmontar titulares sensacionalistas o clickbait. " |
|
f"Tu tarea consiste en analizar noticias con titulares sensacionalistas y " |
|
f"generar un resumen de una sola frase que revele la verdad detrás del titular.\n" |
|
f"Este es el titular de la noticia: {headline}\n" |
|
f"El titular plantea una pregunta o proporciona información incompleta. " |
|
f"Debes buscar en el cuerpo de la noticia una frase que responda lo que se sugiere en el título. " |
|
f"Responde siempre que puedas parafraseando el texto original. " |
|
f"Usa siempre las mínimas palabras posibles. " |
|
f"Recuerda responder siempre en Español.\n" |
|
f"Este es el cuerpo de la noticia:\n" |
|
f"{body}\n" |
|
) |
|
``` |
|
|
|
Here is a practical end-to-end example using the text generation pipeline. |
|
```python |
|
from transformers import pipeline |
|
from datasets import load_dataset |
|
|
|
generator = pipeline(model="google/gemma-2b-it",device_map="auto") |
|
dataset = load_dataset("Iker/NoticIA") |
|
|
|
example = dataset["test"][0] |
|
prompt = clickbait_prompt(headline=example["web_headline"],body=example["web_text"]) |
|
outputs = generator(prompt, return_full_text=False,max_length=4096) |
|
print(outputs) |
|
|
|
# [{'generated_text': 'La tuitera ha recibido un número considerable de comentarios y mensajes de apoyo.'}] |
|
``` |
|
|
|
Here is a practical end-to-end example using the generate function |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from datasets import load_dataset |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") |
|
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it",device_map="auto",quantization_config={"load_in_4bit": True}) |
|
dataset = load_dataset("Iker/NoticIA") |
|
|
|
example = dataset["test"][0] |
|
prompt = clickbait_prompt(headline=example["web_headline"],body=example["web_text"]) |
|
prompt = tokenizer.apply_chat_template( |
|
[{"role": "user", "content": prompt}], |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer( |
|
text=prompt, |
|
max_length=3096, |
|
truncation=True, |
|
padding=False, |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
) |
|
|
|
outputs = model.generate(**model_inputs,max_length=4096) |
|
output_text = tokenizer.batch_decode(outputs) |
|
|
|
print(output_text[0]) |
|
|
|
# La usuaria ha comprado un abrigo para su abuela de 97 años, pero la "yaya" no está de acuerdo. |
|
``` |
|
|
|
|
|
# Uses |
|
This dataset is intended to build models tailored for academic research that can extract information from large texts. The objective is to research whether current LLMs, given a question formulated as a Clickbait headline, can locate the answer within the article body and summarize the information in a few words. The dataset also aims to serve as a task to evaluate the performance of current LLMs in Spanish. |
|
|
|
|
|
# Out-of-Scope Use |
|
You cannot use this dataset to develop systems that directly harm the newspapers included in the dataset. This includes using the dataset to train profit-oriented LLMs capable of generating articles from a short text or headline, as well as developing profit-oriented bots that automatically summarize articles without the permission of the article's owner. Additionally, you are not permitted to train a system with this dataset that generates clickbait headlines. |
|
|
|
This dataset contains text and headlines from newspapers; therefore, you cannot use it for commercial purposes unless you have the license for the data. |
|
|
|
|
|
# Dataset Creation |
|
The dataset has been meticulously created by hand. We utilize two sources to compile Clickbait articles: |
|
- The Twitter user [@ahorrandoclick1](https://twitter.com/ahorrandoclick1), who reposts Clickbait articles along with a hand-crafted summary. Although we use their summaries as a reference, most of them have been rewritten (750 examples from this source). |
|
- The web demo [⚔️ClickbaitFighter⚔️](https://iker-clickbaitfighter.hf.space/), which operates a pre-trained model using an early iteration of our dataset. We collect all the model inputs/outputs and manually correct them (100 examples from this source). |
|
|
|
# Who are the annotators? |
|
The dataset was annotated by [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and validated by [Begoña Altuna](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139). |
|
The annotation took ~40 hours. |
|
|
|
# Citation |
|
|
|
```bittext |
|
@misc{noticia2024, |
|
title={NoticIA: A Clickbait Article Summarization Dataset in Spanish}, |
|
author={Iker García-Ferrero and Begoña Altuna}, |
|
year={2024}, |
|
eprint={2404.07611}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |