Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
Italian
Size:
10M - 100M
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,31 +1,31 @@
|
|
1 |
-
---
|
2 |
-
pretty_name: BioBERT-ITA
|
3 |
-
license: cc-by-sa-4.0
|
4 |
-
dataset_info:
|
5 |
-
features:
|
6 |
-
- name: text
|
7 |
-
dtype: string
|
8 |
-
splits:
|
9 |
-
- name: train
|
10 |
-
num_bytes: 27319024484
|
11 |
-
num_examples: 17203146
|
12 |
-
download_size: 14945984639
|
13 |
-
dataset_size: 27319024484
|
14 |
-
configs:
|
15 |
-
- config_name: default
|
16 |
-
data_files:
|
17 |
-
- split: train
|
18 |
-
path: data/train-*
|
19 |
-
task_categories:
|
20 |
-
- text-generation
|
21 |
-
language:
|
22 |
-
- it
|
23 |
-
tags:
|
24 |
-
- medical
|
25 |
-
- biology
|
26 |
-
size_categories:
|
27 |
-
- 10B<n<100B
|
28 |
-
---
|
29 |
|
30 |
From this repository you can download the **BioBERT_Italian** dataset.
|
31 |
|
@@ -33,6 +33,8 @@ From this repository you can download the **BioBERT_Italian** dataset.
|
|
33 |
|
34 |
Due to the unavailability of an Italian equivalent for the millions of abstracts and full-text scientific papers used by English, BERT-based biomedical models, we leveraged machine translation to obtain an Italian biomedical corpus based on PubMed abstracts and train [**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521).
|
35 |
|
|
|
|
|
36 |
[**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521) has been evaluated on 3 downstream tasks: **NER** (Named Entity Recognition), extractive **QA** (Question Answering), **RE** (Relation Extraction).
|
37 |
Here are the results, summarized:
|
38 |
- NER:
|
@@ -50,7 +52,7 @@ Here are the results, summarized:
|
|
50 |
- [CHEMPROT](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb36) = 38.16%
|
51 |
- [BioRED](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb37) = 67.15%
|
52 |
|
53 |
-
**MedPsyNIT**
|
54 |
|
55 |
We also [**fine-tuned BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423002782) on [**PsyNIT**](IVN-RIN/PsyNIT) (Psychiatric Ner for ITalian), a native Italian **NER** (Named Entity Recognition) dataset, composed by [Italian Research Hospital Centro San Giovanni Di Dio Fatebenefratelli](https://www.fatebenefratelli.it/strutture/irccs-brescia).
|
56 |
|
|
|
1 |
+
---
|
2 |
+
pretty_name: BioBERT-ITA
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
dataset_info:
|
5 |
+
features:
|
6 |
+
- name: text
|
7 |
+
dtype: string
|
8 |
+
splits:
|
9 |
+
- name: train
|
10 |
+
num_bytes: 27319024484
|
11 |
+
num_examples: 17203146
|
12 |
+
download_size: 14945984639
|
13 |
+
dataset_size: 27319024484
|
14 |
+
configs:
|
15 |
+
- config_name: default
|
16 |
+
data_files:
|
17 |
+
- split: train
|
18 |
+
path: data/train-*
|
19 |
+
task_categories:
|
20 |
+
- text-generation
|
21 |
+
language:
|
22 |
+
- it
|
23 |
+
tags:
|
24 |
+
- medical
|
25 |
+
- biology
|
26 |
+
size_categories:
|
27 |
+
- 10B<n<100B
|
28 |
+
---
|
29 |
|
30 |
From this repository you can download the **BioBERT_Italian** dataset.
|
31 |
|
|
|
33 |
|
34 |
Due to the unavailability of an Italian equivalent for the millions of abstracts and full-text scientific papers used by English, BERT-based biomedical models, we leveraged machine translation to obtain an Italian biomedical corpus based on PubMed abstracts and train [**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521).
|
35 |
|
36 |
+
**BioBIT Model**
|
37 |
+
|
38 |
[**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521) has been evaluated on 3 downstream tasks: **NER** (Named Entity Recognition), extractive **QA** (Question Answering), **RE** (Relation Extraction).
|
39 |
Here are the results, summarized:
|
40 |
- NER:
|
|
|
52 |
- [CHEMPROT](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb36) = 38.16%
|
53 |
- [BioRED](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb37) = 67.15%
|
54 |
|
55 |
+
**MedPsyNIT Model**
|
56 |
|
57 |
We also [**fine-tuned BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423002782) on [**PsyNIT**](IVN-RIN/PsyNIT) (Psychiatric Ner for ITalian), a native Italian **NER** (Named Entity Recognition) dataset, composed by [Italian Research Hospital Centro San Giovanni Di Dio Fatebenefratelli](https://www.fatebenefratelli.it/strutture/irccs-brescia).
|
58 |
|