Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Italian
Libraries:
Datasets
Dask
License:
Detsutut commited on
Commit
f80568c
·
verified ·
1 Parent(s): 02ee5ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -43
README.md CHANGED
@@ -1,37 +1,39 @@
1
- ---
2
- pretty_name: BioBERT_Italian
3
- license: cc-by-sa-4.0
4
- dataset_info:
5
- features:
6
- - name: text
7
- dtype: string
8
- splits:
9
- - name: train
10
- num_bytes: 27319024484
11
- num_examples: 17203146
12
- download_size: 14945984639
13
- dataset_size: 27319024484
14
- configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
19
- task_categories:
20
- - text-generation
21
- language:
22
- - it
23
- tags:
24
- - medical
25
- - biology
26
- ---
 
 
27
 
28
  From this repository you can download the **BioBERT_Italian** dataset.
29
 
30
  **BioBERT_Italian** is the Italian translation of the original BioBERT dataset, composed by millions of abstracts of PubMed papers.
31
 
32
- Due to the unavailability of an Italian equivalent for the millions of abstracts and full-text scientific papers used by English, BERT-based biomedical models, we leveraged machine translation to obtain an Italian biomedical corpus based on PubMed abstracts and train **[BioBIT](https://www.sciencedirect.com/science/article/pii/S1532046423001521)**.
33
 
34
- **BioBIT** has been evaluated on 3 downstream tasks: **NER** (Named Entity Recognition), extractive **QA** (Question Answering), **RE** (Relation Extraction).
35
  Here are the results, summarized:
36
  - NER:
37
  - [BC2GM](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb32) = 82.14%
@@ -48,22 +50,9 @@ Here are the results, summarized:
48
  - [CHEMPROT](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb36) = 38.16%
49
  - [BioRED](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb37) = 67.15%
50
 
51
- We also fine-tuned **BioBIT** on **[PsyNIT](https://www.sciencedirect.com/science/article/pii/S1532046423002782)** (Psychiatric Ner for ITalian), a native Italian **NER** (Named Entity Recognition) dataset, composed by [Italian Research Hospital Centro San Giovanni Di Dio Fatebenefratelli](https://www.fatebenefratelli.it/strutture/irccs-brescia).
52
 
53
- It was created starting from 100 electronic medical reports, manually anonymized (removing personal patient data, physicians’ references, dates, and locations). The anonymized documents were annotated by a psychologist with 10 years of experience.
54
- The electronic medical reports contained various information about patients: demographic variables, medical history, results of tests and medical examinations, reports from medical exams, and more.
55
- Four sections of such documents were extracted:
56
- - **Pharmacological history**, usually a structured list of medications that the patient is taking and their dosages.
57
- - **Remote pathologic history and active disease**, usually a list of past and current relevant diseases.
58
- - **Cognitive proximate pathological history**, typically unstructured, includes medical examinations the patient has undergone. It also includes information about the patient’s personal life, such as marital status, daily habits, sleep disorders, and any relevant aspects of his/her behavior.
59
- - **Psychological evaluation**, typically unstructured, reports the result of (neuro)psychological examinations, together with comments from the attending physician.
60
-
61
- The class of entities in PsyNIT are:
62
- - **Diagnosis and comorbidities** (779 examples, 13.23% of the dataset)
63
- - **Cognitive symptoms** (2386 examples, 40.52% of the dataset)
64
- - **Neuropsychiatric symptoms** (707 examples, 12.01% of the dataset)
65
- - **Drug treatment** (162 examples, 2.75% of the dataset)
66
- - **Medical assessment** (1854 examples, 31.49% of the dataset)
67
 
68
  **Correspondence to**
69
 
 
1
+ ---
2
+ pretty_name: BioBERT-ITA
3
+ license: cc-by-sa-4.0
4
+ dataset_info:
5
+ features:
6
+ - name: text
7
+ dtype: string
8
+ splits:
9
+ - name: train
10
+ num_bytes: 27319024484
11
+ num_examples: 17203146
12
+ download_size: 14945984639
13
+ dataset_size: 27319024484
14
+ configs:
15
+ - config_name: default
16
+ data_files:
17
+ - split: train
18
+ path: data/train-*
19
+ task_categories:
20
+ - text-generation
21
+ language:
22
+ - it
23
+ tags:
24
+ - medical
25
+ - biology
26
+ size_categories:
27
+ - 10B<n<100B
28
+ ---
29
 
30
  From this repository you can download the **BioBERT_Italian** dataset.
31
 
32
  **BioBERT_Italian** is the Italian translation of the original BioBERT dataset, composed by millions of abstracts of PubMed papers.
33
 
34
+ Due to the unavailability of an Italian equivalent for the millions of abstracts and full-text scientific papers used by English, BERT-based biomedical models, we leveraged machine translation to obtain an Italian biomedical corpus based on PubMed abstracts and train [**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521).
35
 
36
+ [**BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423001521) has been evaluated on 3 downstream tasks: **NER** (Named Entity Recognition), extractive **QA** (Question Answering), **RE** (Relation Extraction).
37
  Here are the results, summarized:
38
  - NER:
39
  - [BC2GM](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb32) = 82.14%
 
50
  - [CHEMPROT](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb36) = 38.16%
51
  - [BioRED](http://refhub.elsevier.com/S1532-0464(23)00152-1/sb37) = 67.15%
52
 
53
+ **MedPsyNIT**
54
 
55
+ We also [**fine-tuned BioBIT**](https://www.sciencedirect.com/science/article/pii/S1532046423002782) on [**PsyNIT**](IVN-RIN/PsyNIT) (Psychiatric Ner for ITalian), a native Italian **NER** (Named Entity Recognition) dataset, composed by [Italian Research Hospital Centro San Giovanni Di Dio Fatebenefratelli](https://www.fatebenefratelli.it/strutture/irccs-brescia).
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  **Correspondence to**
58