xls-r-300m-nyagen-combined-hp-tuning-test-model
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the NYAGEN - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2689
- Wer: 0.2677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0009268613959558291
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 2.2254 | 100 | 2.9001 | 1.0 |
No log | 4.4507 | 200 | 0.8376 | 0.7849 |
No log | 6.6761 | 300 | 0.3087 | 0.4330 |
No log | 8.9014 | 400 | 0.2516 | 0.3765 |
30.7137 | 11.1127 | 500 | 0.2612 | 0.3434 |
30.7137 | 13.3380 | 600 | 0.2403 | 0.3230 |
30.7137 | 15.5634 | 700 | 0.2480 | 0.3156 |
30.7137 | 17.7887 | 800 | 0.2546 | 0.2939 |
30.7137 | 20.0 | 900 | 0.2638 | 0.2919 |
1.8035 | 22.2254 | 1000 | 0.2689 | 0.2675 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for csikasote/xls-r-300m-nyagen-combined-hp-tuning-test-model
Base model
facebook/wav2vec2-xls-r-300m