w2v-bert-bem-genbed-combined-model
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the GENBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2969
- Wer: 0.4669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6407 | 0.5495 | 200 | 0.6847 | 0.8381 |
0.458 | 1.0989 | 400 | 0.4856 | 0.6787 |
0.4014 | 1.6484 | 600 | 0.4310 | 0.6258 |
0.3523 | 2.1978 | 800 | 0.3654 | 0.5422 |
0.3298 | 2.7473 | 1000 | 0.3534 | 0.5374 |
0.2749 | 3.2967 | 1200 | 0.3402 | 0.5196 |
0.2705 | 3.8462 | 1400 | 0.3284 | 0.5250 |
0.249 | 4.3956 | 1600 | 0.3499 | 0.5299 |
0.2508 | 4.9451 | 1800 | 0.3512 | 0.5582 |
0.2081 | 5.4945 | 2000 | 0.3217 | 0.4808 |
0.2176 | 6.0440 | 2200 | 0.3141 | 0.472 |
0.1784 | 6.5934 | 2400 | 0.2969 | 0.4669 |
0.166 | 7.1429 | 2600 | 0.3367 | 0.4914 |
0.157 | 7.6923 | 2800 | 0.3206 | 0.4903 |
0.1398 | 8.2418 | 3000 | 0.3260 | 0.4617 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for csikasote/w2v-bert-bem-genbed-combined-model
Base model
facebook/w2v-bert-2.0