w2v-bert-bem-bembaspeech-model
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2620
- Wer: 0.5353
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7066 | 0.2811 | 200 | 0.5066 | 0.7648 |
0.5538 | 0.5622 | 400 | 0.4313 | 0.7232 |
0.4574 | 0.8433 | 600 | 0.4102 | 0.6956 |
0.4084 | 1.1244 | 800 | 0.3529 | 0.6276 |
0.388 | 1.4055 | 1000 | 0.3004 | 0.5724 |
0.3803 | 1.6866 | 1200 | 0.3376 | 0.6477 |
0.367 | 1.9677 | 1400 | 0.2911 | 0.5802 |
0.3168 | 2.2488 | 1600 | 0.3106 | 0.5725 |
0.3227 | 2.5299 | 1800 | 0.2654 | 0.5348 |
0.3111 | 2.8110 | 2000 | 0.2621 | 0.5494 |
0.2823 | 3.0921 | 2200 | 0.2665 | 0.5422 |
0.2603 | 3.3732 | 2400 | 0.2623 | 0.5174 |
0.2735 | 3.6543 | 2600 | 0.2620 | 0.5353 |
0.2666 | 3.9353 | 2800 | 0.2753 | 0.5450 |
0.2248 | 4.2164 | 3000 | 0.2881 | 0.5818 |
0.2408 | 4.4975 | 3200 | 0.2748 | 0.5324 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for csikasote/w2v-bert-bem-bembaspeech-model
Base model
facebook/w2v-bert-2.0