See axolotl config
axolotl version: 0.4.1
# Configure the base model
strict: false
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tokenizer_config: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: AutoModelForCausalLM
# Output configuration
hub_model_id: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
dataset_prepared_path: /workspace/gen_judge/data/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
output_dir: /workspace/gen_judge/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
# Format the dataset into the right instruction format.
chat_template: llama3 #llama 3 instruct chat template USE
datasets:
- path: collinear-ai/prompt-response-eval-classification-dataset-final-axolotl
split: without_animal_env_abuse_train
type: chat_template
chat_template: llama3
field_messages: train_conv
message_field_role: role
message_field_content: content
train_on_inputs: false #FALSE
val_set_size: 0.05
# Data packing
sequence_len: 2048
eval_sample_packing: false
sample_packing: false
pad_to_sequence_len: true
group_by_length: false
# Lora config
adapter: qlora
lora_model_dir:
load_in_8bit: false
load_in_4bit: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
# Logging config
wandb_project: general-judge-harmfulness-bif-data
wandb_entity: nazneen
wandb_name: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
# Trainer config
gradient_accumulation_steps: 2
micro_batch_size: 12
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
bfloat16: true
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: true
save_safetensors: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 50
evals_per_epoch: 3
eval_table_size:
eval_max_new_tokens: 500
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.02
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
## weight decay
## add validation set (split add)
harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1492
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 1.8779 |
0.0152 | 0.3332 | 461 | 0.1341 |
0.0072 | 0.6664 | 922 | 0.1252 |
0.0046 | 0.9996 | 1383 | 0.1301 |
0.0022 | 1.3329 | 1844 | 0.1315 |
0.0028 | 1.6661 | 2305 | 0.1361 |
0.0018 | 1.9993 | 2766 | 0.1338 |
0.0005 | 2.3325 | 3227 | 0.1465 |
0.0003 | 2.6657 | 3688 | 0.1488 |
0.0002 | 2.9989 | 4149 | 0.1492 |
Framework versions
- PEFT 0.11.1
- Transformers 4.45.0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct