SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE-v6")
# Run inference
sentences = [
'آیا با دختری که باکره نیست ازدواج خواهید کرد؟',
'آیا با کسی که باکره نیست ازدواج می کنید؟',
'زنی با شلوار جین کنار اسبی با زین ایستاده است',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 149,098 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 15.1 tokens
- max: 76 tokens
- min: 5 tokens
- mean: 14.54 tokens
- max: 57 tokens
- Samples:
anchor positive اگر هند تقسیم نشده بود ، هند امروز چگونه به نظر می رسد؟
اگر پارتیشن اتفاق نیفتاد ، هند امروز چگونه خواهد بود؟
چگونه می توانم وارد امنیت اینترنت شوم؟
چگونه می توانم شروع به یادگیری امنیت اطلاعات کنم؟
برخی از بهترین مؤسسات مربیگری GMAT در دهلی/NCR چیست؟
بهترین مؤسسات مربیگری برای GMAT در NCR چیست؟
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32learning_rate
: 3e-05weight_decay
: 0.15num_train_epochs
: 10warmup_ratio
: 0.15batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.15adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0429 | 100 | 0.1219 |
0.0858 | 200 | 0.0626 |
0.1288 | 300 | 0.0489 |
0.1717 | 400 | 0.0414 |
0.2146 | 500 | 0.0432 |
0.2575 | 600 | 0.0419 |
0.3004 | 700 | 0.0313 |
0.3433 | 800 | 0.0339 |
0.3863 | 900 | 0.0317 |
0.4292 | 1000 | 0.035 |
0.4721 | 1100 | 0.0378 |
0.5150 | 1200 | 0.0308 |
0.5579 | 1300 | 0.0305 |
0.6009 | 1400 | 0.0312 |
0.6438 | 1500 | 0.0304 |
0.6867 | 1600 | 0.0295 |
0.7296 | 1700 | 0.0301 |
0.7725 | 1800 | 0.033 |
0.8155 | 1900 | 0.0263 |
0.8584 | 2000 | 0.0276 |
0.9013 | 2100 | 0.0236 |
0.9442 | 2200 | 0.0276 |
0.9871 | 2300 | 0.0278 |
1.0300 | 2400 | 0.0309 |
1.0730 | 2500 | 0.0269 |
1.1159 | 2600 | 0.0299 |
1.1588 | 2700 | 0.0272 |
1.2017 | 2800 | 0.029 |
1.2446 | 2900 | 0.0309 |
1.2876 | 3000 | 0.0247 |
1.3305 | 3100 | 0.0244 |
1.3734 | 3200 | 0.0261 |
1.4163 | 3300 | 0.0254 |
1.4592 | 3400 | 0.0273 |
1.5021 | 3500 | 0.0298 |
1.5451 | 3600 | 0.0225 |
1.5880 | 3700 | 0.0278 |
1.6309 | 3800 | 0.027 |
1.6738 | 3900 | 0.0218 |
1.7167 | 4000 | 0.0247 |
1.7597 | 4100 | 0.023 |
1.8026 | 4200 | 0.0225 |
1.8455 | 4300 | 0.0191 |
1.8884 | 4400 | 0.0174 |
1.9313 | 4500 | 0.0214 |
1.9742 | 4600 | 0.018 |
2.0172 | 4700 | 0.0227 |
2.0601 | 4800 | 0.0222 |
2.1030 | 4900 | 0.0211 |
2.1459 | 5000 | 0.0204 |
2.1888 | 5100 | 0.0215 |
2.2318 | 5200 | 0.0206 |
2.2747 | 5300 | 0.0213 |
2.3176 | 5400 | 0.0168 |
2.3605 | 5500 | 0.0189 |
2.4034 | 5600 | 0.0206 |
2.4464 | 5700 | 0.0194 |
2.4893 | 5800 | 0.0182 |
2.5322 | 5900 | 0.017 |
2.5751 | 6000 | 0.0186 |
2.6180 | 6100 | 0.017 |
2.6609 | 6200 | 0.0152 |
2.7039 | 6300 | 0.0164 |
2.7468 | 6400 | 0.0142 |
2.7897 | 6500 | 0.0162 |
2.8326 | 6600 | 0.0123 |
2.8755 | 6700 | 0.0162 |
2.9185 | 6800 | 0.0138 |
2.9614 | 6900 | 0.0163 |
3.0043 | 7000 | 0.0138 |
3.0472 | 7100 | 0.0164 |
3.0901 | 7200 | 0.016 |
3.1330 | 7300 | 0.0175 |
3.1760 | 7400 | 0.0143 |
3.2189 | 7500 | 0.0142 |
3.2618 | 7600 | 0.0176 |
3.3047 | 7700 | 0.0147 |
3.3476 | 7800 | 0.0164 |
3.3906 | 7900 | 0.0133 |
3.4335 | 8000 | 0.0168 |
3.4764 | 8100 | 0.0166 |
3.5193 | 8200 | 0.0138 |
3.5622 | 8300 | 0.0126 |
3.6052 | 8400 | 0.0145 |
3.6481 | 8500 | 0.0114 |
3.6910 | 8600 | 0.0137 |
3.7339 | 8700 | 0.014 |
3.7768 | 8800 | 0.0134 |
3.8197 | 8900 | 0.0108 |
3.8627 | 9000 | 0.012 |
3.9056 | 9100 | 0.0102 |
3.9485 | 9200 | 0.0119 |
3.9914 | 9300 | 0.0122 |
4.0343 | 9400 | 0.0116 |
4.0773 | 9500 | 0.0136 |
4.1202 | 9600 | 0.0135 |
4.1631 | 9700 | 0.0108 |
4.2060 | 9800 | 0.0119 |
4.2489 | 9900 | 0.0142 |
4.2918 | 10000 | 0.0111 |
4.3348 | 10100 | 0.0131 |
4.3777 | 10200 | 0.0103 |
4.4206 | 10300 | 0.0124 |
4.4635 | 10400 | 0.0163 |
4.5064 | 10500 | 0.0123 |
4.5494 | 10600 | 0.0112 |
4.5923 | 10700 | 0.01 |
4.6352 | 10800 | 0.0096 |
4.6781 | 10900 | 0.0103 |
4.7210 | 11000 | 0.0102 |
4.7639 | 11100 | 0.0092 |
4.8069 | 11200 | 0.0107 |
4.8498 | 11300 | 0.0114 |
4.8927 | 11400 | 0.0091 |
4.9356 | 11500 | 0.0108 |
4.9785 | 11600 | 0.0092 |
5.0215 | 11700 | 0.0086 |
5.0644 | 11800 | 0.0104 |
5.1073 | 11900 | 0.0123 |
5.1502 | 12000 | 0.009 |
5.1931 | 12100 | 0.0106 |
5.2361 | 12200 | 0.0114 |
5.2790 | 12300 | 0.0098 |
5.3219 | 12400 | 0.0093 |
5.3648 | 12500 | 0.0092 |
5.4077 | 12600 | 0.011 |
5.4506 | 12700 | 0.0113 |
5.4936 | 12800 | 0.0091 |
5.5365 | 12900 | 0.0079 |
5.5794 | 13000 | 0.01 |
5.6223 | 13100 | 0.0067 |
5.6652 | 13200 | 0.0081 |
5.7082 | 13300 | 0.0097 |
5.7511 | 13400 | 0.0081 |
5.7940 | 13500 | 0.0094 |
5.8369 | 13600 | 0.0074 |
5.8798 | 13700 | 0.0071 |
5.9227 | 13800 | 0.0074 |
5.9657 | 13900 | 0.0076 |
6.0086 | 14000 | 0.0063 |
6.0515 | 14100 | 0.0083 |
6.0944 | 14200 | 0.0101 |
6.1373 | 14300 | 0.0084 |
6.1803 | 14400 | 0.0074 |
6.2232 | 14500 | 0.007 |
6.2661 | 14600 | 0.0078 |
6.3090 | 14700 | 0.0074 |
6.3519 | 14800 | 0.0086 |
6.3948 | 14900 | 0.0069 |
6.4378 | 15000 | 0.0083 |
6.4807 | 15100 | 0.0082 |
6.5236 | 15200 | 0.0066 |
6.5665 | 15300 | 0.0086 |
6.6094 | 15400 | 0.0059 |
6.6524 | 15500 | 0.0052 |
6.6953 | 15600 | 0.0081 |
6.7382 | 15700 | 0.0054 |
6.7811 | 15800 | 0.0063 |
6.8240 | 15900 | 0.0065 |
6.8670 | 16000 | 0.0068 |
6.9099 | 16100 | 0.0047 |
6.9528 | 16200 | 0.0065 |
6.9957 | 16300 | 0.0064 |
7.0386 | 16400 | 0.0051 |
7.0815 | 16500 | 0.0066 |
7.1245 | 16600 | 0.0069 |
7.1674 | 16700 | 0.0074 |
7.2103 | 16800 | 0.0062 |
7.2532 | 16900 | 0.0071 |
7.2961 | 17000 | 0.005 |
7.3391 | 17100 | 0.008 |
7.3820 | 17200 | 0.0047 |
7.4249 | 17300 | 0.0073 |
7.4678 | 17400 | 0.0078 |
7.5107 | 17500 | 0.0058 |
7.5536 | 17600 | 0.0055 |
7.5966 | 17700 | 0.0049 |
7.6395 | 17800 | 0.0046 |
7.6824 | 17900 | 0.0051 |
7.7253 | 18000 | 0.005 |
7.7682 | 18100 | 0.0059 |
7.8112 | 18200 | 0.0056 |
7.8541 | 18300 | 0.0049 |
7.8970 | 18400 | 0.0038 |
7.9399 | 18500 | 0.005 |
7.9828 | 18600 | 0.005 |
8.0258 | 18700 | 0.0036 |
8.0687 | 18800 | 0.0049 |
8.1116 | 18900 | 0.0067 |
8.1545 | 19000 | 0.0056 |
8.1974 | 19100 | 0.0061 |
8.2403 | 19200 | 0.0054 |
8.2833 | 19300 | 0.0046 |
8.3262 | 19400 | 0.0048 |
8.3691 | 19500 | 0.0052 |
8.4120 | 19600 | 0.0059 |
8.4549 | 19700 | 0.0053 |
8.4979 | 19800 | 0.0049 |
8.5408 | 19900 | 0.0036 |
8.5837 | 20000 | 0.0049 |
8.6266 | 20100 | 0.0033 |
8.6695 | 20200 | 0.0049 |
8.7124 | 20300 | 0.0043 |
8.7554 | 20400 | 0.0039 |
8.7983 | 20500 | 0.0038 |
8.8412 | 20600 | 0.0035 |
8.8841 | 20700 | 0.0041 |
8.9270 | 20800 | 0.0042 |
8.9700 | 20900 | 0.0056 |
9.0129 | 21000 | 0.0031 |
9.0558 | 21100 | 0.004 |
9.0987 | 21200 | 0.0043 |
9.1416 | 21300 | 0.0047 |
9.1845 | 21400 | 0.0051 |
9.2275 | 21500 | 0.0032 |
9.2704 | 21600 | 0.0045 |
9.3133 | 21700 | 0.0038 |
9.3562 | 21800 | 0.0045 |
9.3991 | 21900 | 0.0047 |
9.4421 | 22000 | 0.0048 |
9.4850 | 22100 | 0.0042 |
9.5279 | 22200 | 0.0039 |
9.5708 | 22300 | 0.0042 |
9.6137 | 22400 | 0.003 |
9.6567 | 22500 | 0.0031 |
9.6996 | 22600 | 0.0042 |
9.7425 | 22700 | 0.0028 |
9.7854 | 22800 | 0.0037 |
9.8283 | 22900 | 0.0035 |
9.8712 | 23000 | 0.0033 |
9.9142 | 23100 | 0.0029 |
9.9571 | 23200 | 0.0048 |
10.0 | 23300 | 0.0039 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for codersan/FaLaBSE-v6
Base model
sentence-transformers/LaBSE