Metrics
- loss: 1.6841
- accuracy: 0.7884
- precision: 0.8028
- recall: 0.7884
- precision_macro: 0.6408
- recall_macro: 0.6436
- macro_fpr: 0.0956
- weighted_fpr: 0.0821
- weighted_specificity: 0.8781
- macro_specificity: 0.9166
- weighted_sensitivity: 0.7884
- macro_sensitivity: 0.6436
- f1_micro: 0.7884
- f1_macro: 0.6410
- f1_weighted: 0.7953
- runtime: 229.8279
- samples_per_second: 1.9540
- steps_per_second: 0.2480
case-analysis-roberta-base
This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6841
- Accuracy: 0.7884
- Precision: 0.8028
- Recall: 0.7884
- Precision Macro: 0.6320
- Recall Macro: 0.6238
- Macro Fpr: 0.0958
- Weighted Fpr: 0.0781
- Weighted Specificity: 0.8648
- Macro Specificity: 0.9155
- Weighted Sensitivity: 0.7973
- Macro Sensitivity: 0.6238
- F1 Micro: 0.7973
- F1 Macro: 0.6277
- F1 Weighted: 0.7968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 224 | 0.8771 | 0.7528 | 0.7120 | 0.7528 | 0.5404 | 0.5402 | 0.1314 | 0.0987 | 0.7806 | 0.8833 | 0.7528 | 0.5402 | 0.7528 | 0.5389 | 0.7301 |
No log | 2.0 | 448 | 0.7936 | 0.7728 | 0.7420 | 0.7728 | 0.5529 | 0.5937 | 0.1080 | 0.0892 | 0.8458 | 0.9046 | 0.7728 | 0.5937 | 0.7728 | 0.5712 | 0.7555 |
0.8855 | 3.0 | 672 | 0.8127 | 0.7305 | 0.7321 | 0.7305 | 0.5336 | 0.5600 | 0.1288 | 0.1095 | 0.8209 | 0.8879 | 0.7305 | 0.5600 | 0.7305 | 0.5313 | 0.7208 |
0.8855 | 4.0 | 896 | 1.0186 | 0.7795 | 0.7503 | 0.7795 | 0.5722 | 0.5654 | 0.1184 | 0.0862 | 0.8004 | 0.8950 | 0.7795 | 0.5654 | 0.7795 | 0.5605 | 0.7561 |
0.5551 | 5.0 | 1120 | 0.7591 | 0.8085 | 0.7674 | 0.8085 | 0.5833 | 0.5963 | 0.0988 | 0.0732 | 0.8375 | 0.9115 | 0.8085 | 0.5963 | 0.8085 | 0.5892 | 0.7867 |
0.5551 | 6.0 | 1344 | 0.9522 | 0.8174 | 0.7816 | 0.8174 | 0.6117 | 0.5988 | 0.0967 | 0.0693 | 0.8297 | 0.9118 | 0.8174 | 0.5988 | 0.8174 | 0.6030 | 0.7967 |
0.386 | 7.0 | 1568 | 1.0569 | 0.7706 | 0.7610 | 0.7706 | 0.5710 | 0.5858 | 0.1089 | 0.0903 | 0.8522 | 0.9057 | 0.7706 | 0.5858 | 0.7706 | 0.5782 | 0.7656 |
0.386 | 8.0 | 1792 | 1.1957 | 0.7572 | 0.7918 | 0.7572 | 0.6175 | 0.6264 | 0.1052 | 0.0965 | 0.8905 | 0.9119 | 0.7572 | 0.6264 | 0.7572 | 0.6162 | 0.7715 |
0.2709 | 9.0 | 2016 | 1.2092 | 0.7728 | 0.7897 | 0.7728 | 0.6331 | 0.6301 | 0.1021 | 0.0892 | 0.8751 | 0.9120 | 0.7728 | 0.6301 | 0.7728 | 0.6264 | 0.7773 |
0.2709 | 10.0 | 2240 | 1.3830 | 0.7706 | 0.7782 | 0.7706 | 0.6112 | 0.6073 | 0.1094 | 0.0903 | 0.8464 | 0.9043 | 0.7706 | 0.6073 | 0.7706 | 0.6072 | 0.7728 |
0.2709 | 11.0 | 2464 | 1.4518 | 0.7817 | 0.7944 | 0.7817 | 0.6157 | 0.6059 | 0.1030 | 0.0851 | 0.8606 | 0.9106 | 0.7817 | 0.6059 | 0.7817 | 0.6077 | 0.7856 |
0.1837 | 12.0 | 2688 | 1.5283 | 0.7684 | 0.7840 | 0.7684 | 0.6143 | 0.6003 | 0.1058 | 0.0913 | 0.8701 | 0.9096 | 0.7684 | 0.6003 | 0.7684 | 0.6022 | 0.7726 |
0.1837 | 13.0 | 2912 | 1.5136 | 0.7817 | 0.7907 | 0.7817 | 0.6231 | 0.6472 | 0.0979 | 0.0851 | 0.8733 | 0.9137 | 0.7817 | 0.6472 | 0.7817 | 0.6332 | 0.7848 |
0.1212 | 14.0 | 3136 | 1.6569 | 0.7506 | 0.8138 | 0.7506 | 0.6380 | 0.6499 | 0.1039 | 0.0997 | 0.8911 | 0.9104 | 0.7506 | 0.6499 | 0.7506 | 0.6327 | 0.7764 |
0.1212 | 15.0 | 3360 | 1.5305 | 0.7661 | 0.7714 | 0.7661 | 0.5965 | 0.6203 | 0.1054 | 0.0923 | 0.8710 | 0.9093 | 0.7661 | 0.6203 | 0.7661 | 0.6068 | 0.7669 |
0.0793 | 16.0 | 3584 | 1.4931 | 0.7996 | 0.7896 | 0.7996 | 0.6016 | 0.6193 | 0.0947 | 0.0771 | 0.8625 | 0.9155 | 0.7996 | 0.6193 | 0.7996 | 0.6085 | 0.7933 |
0.0793 | 17.0 | 3808 | 1.4582 | 0.8018 | 0.7911 | 0.8018 | 0.6143 | 0.6131 | 0.0963 | 0.0761 | 0.8523 | 0.9135 | 0.8018 | 0.6131 | 0.8018 | 0.6132 | 0.7958 |
0.0473 | 18.0 | 4032 | 1.6772 | 0.7795 | 0.7924 | 0.7795 | 0.6154 | 0.6342 | 0.0990 | 0.0862 | 0.8742 | 0.9134 | 0.7795 | 0.6342 | 0.7795 | 0.6224 | 0.7843 |
0.0473 | 19.0 | 4256 | 1.5707 | 0.7929 | 0.7890 | 0.7929 | 0.6409 | 0.6339 | 0.0966 | 0.0801 | 0.8666 | 0.9149 | 0.7929 | 0.6339 | 0.7929 | 0.6348 | 0.7892 |
0.0473 | 20.0 | 4480 | 1.4891 | 0.8018 | 0.8136 | 0.8018 | 0.6441 | 0.6284 | 0.0916 | 0.0761 | 0.8768 | 0.9196 | 0.8018 | 0.6284 | 0.8018 | 0.6355 | 0.8073 |
0.0476 | 21.0 | 4704 | 1.5064 | 0.8062 | 0.8181 | 0.8062 | 0.6511 | 0.6320 | 0.0896 | 0.0742 | 0.8754 | 0.9204 | 0.8062 | 0.6320 | 0.8062 | 0.6407 | 0.8117 |
0.0476 | 22.0 | 4928 | 1.5076 | 0.8107 | 0.8003 | 0.8107 | 0.6296 | 0.6247 | 0.0913 | 0.0722 | 0.8642 | 0.9187 | 0.8107 | 0.6247 | 0.8107 | 0.6265 | 0.8050 |
0.0366 | 23.0 | 5152 | 1.5891 | 0.7973 | 0.8113 | 0.7973 | 0.6455 | 0.6382 | 0.0929 | 0.0781 | 0.8763 | 0.9184 | 0.7973 | 0.6382 | 0.7973 | 0.6407 | 0.8038 |
0.0366 | 24.0 | 5376 | 1.6779 | 0.7951 | 0.7990 | 0.7951 | 0.6306 | 0.5982 | 0.0994 | 0.0791 | 0.8581 | 0.9133 | 0.7951 | 0.5982 | 0.7951 | 0.6123 | 0.7956 |
0.0368 | 25.0 | 5600 | 1.6211 | 0.8040 | 0.8024 | 0.8040 | 0.6420 | 0.6223 | 0.0952 | 0.0751 | 0.8570 | 0.9152 | 0.8040 | 0.6223 | 0.8040 | 0.6313 | 0.8023 |
0.0368 | 26.0 | 5824 | 1.4841 | 0.8062 | 0.8060 | 0.8062 | 0.6364 | 0.6416 | 0.0894 | 0.0742 | 0.8775 | 0.9209 | 0.8062 | 0.6416 | 0.8062 | 0.6385 | 0.8058 |
0.0252 | 27.0 | 6048 | 1.6841 | 0.7884 | 0.8028 | 0.7884 | 0.6408 | 0.6436 | 0.0956 | 0.0821 | 0.8781 | 0.9166 | 0.7884 | 0.6436 | 0.7884 | 0.6410 | 0.7953 |
0.0252 | 28.0 | 6272 | 1.7185 | 0.7929 | 0.8006 | 0.7929 | 0.6386 | 0.6338 | 0.0954 | 0.0801 | 0.8725 | 0.9163 | 0.7929 | 0.6338 | 0.7929 | 0.6355 | 0.7964 |
0.0252 | 29.0 | 6496 | 1.6500 | 0.7996 | 0.7989 | 0.7996 | 0.6338 | 0.6276 | 0.0942 | 0.0771 | 0.8678 | 0.9168 | 0.7996 | 0.6276 | 0.7996 | 0.6306 | 0.7992 |
0.0147 | 30.0 | 6720 | 1.6506 | 0.7973 | 0.7965 | 0.7973 | 0.6320 | 0.6238 | 0.0958 | 0.0781 | 0.8648 | 0.9155 | 0.7973 | 0.6238 | 0.7973 | 0.6277 | 0.7968 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 51
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for cite-text-analysis/case-analysis-roberta-base
Base model
FacebookAI/roberta-base