Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/zephyr-sft
bf16: true
chat_template: llama3
data_processes: 24
dataset_prepared_path: null
datasets:
- data_files:
  - 11d789ce36e36cb6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/11d789ce36e36cb6_train_data.json
  type:
    field_input: Genre
    field_instruction: Title
    field_output: Overview
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: cimol/f6df2d08-44f1-4f27-bc65-b745cce6bb47
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/11d789ce36e36cb6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 32
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7e4e856c-b584-43ab-95c0-8f45d647f4e0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7e4e856c-b584-43ab-95c0-8f45d647f4e0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f6df2d08-44f1-4f27-bc65-b745cce6bb47

This model is a fine-tuned version of unsloth/zephyr-sft on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 17333
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 2.6629
9.2476 0.0349 50 2.6102
9.4905 0.0699 100 2.7666
9.1972 0.1048 150 2.5794
9.2126 0.1398 200 2.5569
9.3635 0.1747 250 2.4580
9.4155 0.2097 300 2.4029
9.4682 0.2446 350 2.3209
9.3618 0.2796 400 2.3104
9.2972 0.3145 450 2.2556
9.5045 0.3495 500 2.2152
9.5899 0.3844 550 2.2050
9.6758 0.4194 600 2.2069

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for cimol/f6df2d08-44f1-4f27-bc65-b745cce6bb47

Base model

unsloth/zephyr-sft
Adapter
(261)
this model