LLaMA 33b finetuned on wikitext_document_level
with a combination of both linear and NTK-aware ROPE scaling.
Trained with alpha=4, scale=2. Definitely works for sequence lengths up to and including 4096. Might work for much longer, but I don't have the VRAM to test properly. ¯\_(ツ)_/¯
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.4.0.dev0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for chargoddard/llama33b-s2a4-qlora
Base model
huggyllama/llama-30b