ModernBERT-large-hate-mr
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.2742 | 1.0 | 31 | 0.6678 | 0.6 | 0.6349 | 0.5994 | 0.5715 |
1.1108 | 2.0 | 62 | 0.7303 | 0.5590 | 0.6745 | 0.5581 | 0.4701 |
1.024 | 3.0 | 93 | 0.6116 | 0.6795 | 0.7223 | 0.6800 | 0.6637 |
0.7994 | 4.0 | 124 | 0.6951 | 0.6506 | 0.7108 | 0.6500 | 0.6232 |
0.4984 | 5.0 | 155 | 0.8937 | 0.7012 | 0.7209 | 0.7008 | 0.6942 |
0.1153 | 6.0 | 186 | 1.4426 | 0.6940 | 0.7011 | 0.6942 | 0.6914 |
0.0718 | 7.0 | 217 | 1.2927 | 0.6988 | 0.6994 | 0.6989 | 0.6986 |
0.006 | 8.0 | 248 | 1.6155 | 0.7229 | 0.7262 | 0.7227 | 0.7218 |
0.0004 | 9.0 | 279 | 1.4752 | 0.7157 | 0.7173 | 0.7158 | 0.7152 |
0.0002 | 9.6885 | 300 | 1.4857 | 0.7205 | 0.7215 | 0.7206 | 0.7202 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for callmesan/ModernBERT-large-hate-mr
Base model
answerdotai/ModernBERT-large