|
--- |
|
license: llama2 |
|
library_name: transformers |
|
tags: |
|
- code |
|
model-index: |
|
- name: Code Millenials |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: HumanEval |
|
type: openai_humaneval |
|
metrics: |
|
- type: pass@1 |
|
value: 0.8048 |
|
name: pass@1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 49.83 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 75.09 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 49.28 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 45.37 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 69.06 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 32.45 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
|
|
# Bud Code Millenials 34B |
|
|
|
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to [email protected] |
|
### News ๐ฅ๐ฅ๐ฅ |
|
|
|
- [2024/01/09] We released **Code Millenials 3B** , which achieves the **56.09 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). |
|
- [2024/01/09] We released **Code Millenials 1B** , which achieves the **51.82 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). |
|
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). |
|
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). |
|
|
|
|
|
### HumanEval |
|
|
|
<p align="center" width="100%"> |
|
<a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> |
|
</p> |
|
|
|
For the millenial models, the eval script in the github repo is used for the above result. |
|
|
|
Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc. |
|
|
|
|
|
### Models |
|
|
|
| Model | Checkpoint | HumanEval (+) | MBPP (+) | |
|
|---------|-------------|---------------|----------| |
|
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) | |
|
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) | |
|
|Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | 56.09 (52.43) | 55.13 (47.11) | |
|
|Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | 51.82 (48.17) | 53.13 (44.61) | |
|
|
|
|
|
|
|
|
|
### ๐ Quick Start |
|
|
|
Inference code using the pre-trained model from the Hugging Face model hub |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-34b") |
|
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-34b") |
|
|
|
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. |
|
|
|
### Instruction: {instruction} |
|
|
|
### Response:""" |
|
|
|
instruction = <Your code instruction here> |
|
|
|
prompt = template.format(instruction=instruction) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
sample = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(sample[0])) |
|
|
|
``` |
|
|
|
|
|
## Training details |
|
|
|
The model is trained of 16 A100 80GB for approximately 50hrs. |
|
|
|
| Hyperparameters | Value | |
|
| :----------------------------| :-----: | |
|
| per_device_train_batch_size | 16 | |
|
| gradient_accumulation_steps | 1 | |
|
| epoch | 3 | |
|
| steps | 2157 | |
|
| learning_rate | 2e-5 | |
|
| lr schedular type | cosine | |
|
| warmup ratio | 0.1 | |
|
| optimizer | adamw | |
|
| fp16 | True | |
|
| GPU | 16 A100 80GB | |
|
|
|
### Important Note |
|
|
|
- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_budecosystem__code-millenials-34b) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |53.51| |
|
|AI2 Reasoning Challenge (25-Shot)|49.83| |
|
|HellaSwag (10-Shot) |75.09| |
|
|MMLU (5-Shot) |49.28| |
|
|TruthfulQA (0-shot) |45.37| |
|
|Winogrande (5-shot) |69.06| |
|
|GSM8k (5-shot) |32.45| |
|
|
|
|