See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9d1e429593d11bcf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9d1e429593d11bcf_train_data.json
type:
field_instruction: instruct_id
field_output: instruct_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: broodmother41/7f033805-9ef4-498e-b6f7-66abe9877c5e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/9d1e429593d11bcf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 456109aa-d7f9-41ee-9b6e-75c6e8438da8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 456109aa-d7f9-41ee-9b6e-75c6e8438da8
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
7f033805-9ef4-498e-b6f7-66abe9877c5e
This model is a fine-tuned version of jhflow/mistral7b-lora-multi-turn-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2453
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.0063 | 0.1904 | 200 | 1.2453 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for broodmother41/7f033805-9ef4-498e-b6f7-66abe9877c5e
Base model
jhflow/mistral7b-lora-multi-turn-v2