How to get started

  • Run the training: sbatch run.sh

This command will:

  • Set up the environement
  • Install required libraries: pip install -r requirements.txt -q
  • Move to the code folder: cd code
  • Run the training & evaluate: python run_train.py

NER Results

Model Task Pretraining/Finetuning Dataset Pretraining/Finetuning Language(s) Evaluation Dataset Metric Metric's Value
AfroLM-Large Single Task MasakhaNER 2.0 All FON NER F1-Score 80.48
AfriBERTa-Large Single Task MasakhaNER 2.0 All FON NER F1-Score 79.90
XLMR-Base Single Task MasakhaNER 2.0 All FON NER F1-Score 81.90
XLMR-Large Single Task MasakhaNER 2.0 All FON NER F1-Score 81.60
AfroXLMR-Base Single Task MasakhaNER 2.0 All FON NER F1-Score 82.30
AfroXLMR-Large Single Task MasakhaNER 2.0 All FON NER F1-Score 82.70
:---: :---: :---: :---: :---: :---:
MTL Sum (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS All FON NER F1-Score 79.87
MTL Weighted (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS All FON NER F1-Score 81.92
MTL Weighted (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS Fon Data FON NER F1-Score 64.43

POS Results

Model Task Pretraining/Finetuning Dataset Pretraining/Finetuning Language(s) Evaluation Dataset Metric Metric's Value
AfroLM-Large Single Task MasakhaPOS All FON POS Accuracy 82.40
AfriBERTa-Large Single Task MasakhaPOS All FON POS Accuracy 88.40
XLMR-Base Single Task MasakhaPOS All FON POS Accuracy 90.10
XLMR-Large Single Task MasakhaPOS All FON POS Accuracy 90.20
AfroXLMR-Base Single Task MasakhaPOS All FON POS Accuracy 90.10
AfroXLMR-Large Single Task MasakhaPOS All FON POS Accuracy 90.40
:---: :---: :---: :---: :---: :---:
MTL Sum (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS All FON POS Accuracy 82.45
MTL Weighted (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS All FON POS Accuracy 89.20
MTL Weighted (ours) Multi-Task MasakhaNER 2.0 & MasakhaPOS Fon Data FON POS Accuracy 80.85

Importance of Merging Representation Type

Merging Type Models Task Metric Metric's Value
Multiplicative MTL Weighted (multi-task; ours; *) NER F1-Score 81.92
Multiplicative MTL Weighted (multi-task; ours; +) NER F1-Score 64.43
:---: :---: :---: :---: :---:
Multiplicative MTL Weighted (multi-task; ours; *) POS Accuracy 89.20
Multiplicative & MTL Weighted (multi-task; ours; +) POS Accuracy 80.85
:---: :---: :---: :---: :---:
Additive MTL Weighted (multi-task; ours; *) NER F1-Score 78.91
Additive MTL Weighted (multi-task; ours; +) NER F1-Score 60.93
:---: :---: :---: :---: :---:
Additive MTL Weighted (multi-task; ours; *) POS Accuracy 86.99
Additive MTL Weighted (multi-task; ours; +) POS Accuracy 78.25

Model End-Points

How to run inference when you have the model

To run inference with the model(s), you can use the testing block defined in our MultitaskFON class.

TODO

  • leverage the impact of the dynamic weighted average loss
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train bonadossou/multitask_model_fon_True_multiplicative