Model Card for convnext_v2_tiny_intermediate-eu-common
A ConvNext v2 image classification model. The model follows a two-stage training process: first undergoing intermediate training on a large-scale dataset containing diverse bird species from around the world, then fine-tuned specifically on the eu-common
dataset containing common European bird species.
The species list is derived from the Collins bird guide [^1].
[^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins.
Model Details
Model Type: Image classification and detection backbone
Model Stats:
- Params (M): 28.4
- Input image size: 384 x 384
Dataset: eu-common (707 classes)
- Intermediate training involved ~4000 species from asia, europe and eastern africa
Papers:
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: https://arxiv.org/abs/2301.00808
Model Usage
Image Classification
import birder
from birder.inference.classification import infer_image
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(signature)
# Create an inference transform
transform = birder.classification_transform(size, rgb_stats)
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
(out, _) = infer_image(net, image, transform)
# out is a NumPy array with shape of (1, num_classes), representing class probabilities.
Image Embeddings
import birder
from birder.inference.classification import infer_image
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(signature)
# Create an inference transform
transform = birder.classification_transform(size, rgb_stats)
image = "path/to/image.jpeg" # or a PIL image
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
# embedding is a NumPy array with shape of (1, embedding_size)
Detection Feature Map
from PIL import Image
import birder
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(signature)
# Create an inference transform
transform = birder.classification_transform(size, rgb_stats)
image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
# features is a dict (stage name -> torch.Tensor)
print([(k, v.size()) for k, v in features.items()])
# Output example:
# [('stage1', torch.Size([1, 96, 96, 96])),
# ('stage2', torch.Size([1, 192, 48, 48])),
# ('stage3', torch.Size([1, 384, 24, 24])),
# ('stage4', torch.Size([1, 768, 12, 12]))]
Citation
@misc{woo2023convnextv2codesigningscaling,
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
year={2023},
eprint={2301.00808},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2301.00808},
}
- Downloads last month
- 64
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support birder models with pipeline type image-classification