MAE-CT-M1N0-M12_v8_split2_v3
This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5210
- Accuracy: 0.7808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6593 | 0.0068 | 71 | 0.6615 | 0.6301 |
0.6079 | 1.0068 | 142 | 0.6573 | 0.6301 |
0.6428 | 2.0068 | 213 | 0.6510 | 0.6301 |
0.7179 | 3.0068 | 284 | 0.6321 | 0.6301 |
0.6131 | 4.0068 | 355 | 0.6464 | 0.6301 |
0.6769 | 5.0068 | 426 | 0.5554 | 0.6712 |
0.7054 | 6.0068 | 497 | 0.5056 | 0.7534 |
0.758 | 7.0068 | 568 | 0.5272 | 0.7397 |
0.5288 | 8.0068 | 639 | 0.5494 | 0.6986 |
0.3878 | 9.0068 | 710 | 0.5180 | 0.7260 |
0.2466 | 10.0068 | 781 | 0.7316 | 0.6986 |
0.8338 | 11.0068 | 852 | 1.1721 | 0.6712 |
0.603 | 12.0068 | 923 | 0.7357 | 0.7534 |
0.2309 | 13.0068 | 994 | 1.1961 | 0.6986 |
0.2656 | 14.0068 | 1065 | 1.1105 | 0.7123 |
0.5578 | 15.0068 | 1136 | 1.3217 | 0.7123 |
0.2875 | 16.0068 | 1207 | 1.2618 | 0.6986 |
0.4332 | 17.0068 | 1278 | 1.3750 | 0.7260 |
0.4794 | 18.0068 | 1349 | 1.5369 | 0.7260 |
0.3151 | 19.0068 | 1420 | 1.2066 | 0.7397 |
0.2433 | 20.0068 | 1491 | 1.6149 | 0.6986 |
0.1373 | 21.0068 | 1562 | 1.6916 | 0.7397 |
0.0864 | 22.0068 | 1633 | 2.3674 | 0.6849 |
0.2188 | 23.0068 | 1704 | 2.4041 | 0.6712 |
0.089 | 24.0068 | 1775 | 1.8638 | 0.7123 |
0.0911 | 25.0068 | 1846 | 2.0675 | 0.6986 |
0.137 | 26.0068 | 1917 | 1.8598 | 0.7123 |
0.1882 | 27.0068 | 1988 | 1.6897 | 0.7534 |
0.1562 | 28.0068 | 2059 | 2.6265 | 0.6849 |
0.0003 | 29.0068 | 2130 | 1.6721 | 0.6986 |
0.1783 | 30.0068 | 2201 | 2.0134 | 0.7260 |
0.0041 | 31.0068 | 2272 | 1.8352 | 0.7260 |
0.0001 | 32.0068 | 2343 | 2.3171 | 0.7123 |
0.0001 | 33.0068 | 2414 | 2.2544 | 0.6986 |
0.0443 | 34.0068 | 2485 | 2.0805 | 0.7260 |
0.0052 | 35.0068 | 2556 | 2.5061 | 0.6849 |
0.1231 | 36.0068 | 2627 | 2.2596 | 0.6438 |
0.0001 | 37.0068 | 2698 | 2.4168 | 0.7260 |
0.0001 | 38.0068 | 2769 | 2.4288 | 0.7123 |
0.0667 | 39.0068 | 2840 | 2.6743 | 0.6849 |
0.0001 | 40.0068 | 2911 | 2.4385 | 0.7123 |
0.0001 | 41.0068 | 2982 | 2.0221 | 0.7397 |
0.0561 | 42.0068 | 3053 | 2.1503 | 0.6712 |
0.005 | 43.0068 | 3124 | 3.0311 | 0.6575 |
0.0 | 44.0068 | 3195 | 2.2170 | 0.7260 |
0.2196 | 45.0068 | 3266 | 2.0672 | 0.6986 |
0.1848 | 46.0068 | 3337 | 2.5003 | 0.6575 |
0.2445 | 47.0068 | 3408 | 2.0344 | 0.6849 |
0.3096 | 48.0068 | 3479 | 2.4040 | 0.6986 |
0.0 | 49.0068 | 3550 | 2.3224 | 0.7123 |
0.0 | 50.0068 | 3621 | 2.6102 | 0.6849 |
0.2334 | 51.0068 | 3692 | 3.0010 | 0.6849 |
0.0001 | 52.0068 | 3763 | 2.2647 | 0.7397 |
0.0001 | 53.0068 | 3834 | 2.2806 | 0.7123 |
0.0 | 54.0068 | 3905 | 2.5543 | 0.7260 |
0.0 | 55.0068 | 3976 | 2.6203 | 0.6986 |
0.2117 | 56.0068 | 4047 | 2.5486 | 0.6849 |
0.0001 | 57.0068 | 4118 | 2.2072 | 0.6986 |
0.0001 | 58.0068 | 4189 | 2.4930 | 0.6986 |
0.0001 | 59.0068 | 4260 | 2.3262 | 0.7123 |
0.3114 | 60.0068 | 4331 | 3.0585 | 0.6575 |
0.0001 | 61.0068 | 4402 | 2.0491 | 0.7260 |
0.0057 | 62.0068 | 4473 | 2.0623 | 0.7397 |
0.0 | 63.0068 | 4544 | 2.5215 | 0.6986 |
0.0319 | 64.0068 | 4615 | 2.4648 | 0.7123 |
0.2879 | 65.0068 | 4686 | 2.4885 | 0.6712 |
0.0001 | 66.0068 | 4757 | 1.8654 | 0.6986 |
0.0001 | 67.0068 | 4828 | 2.3100 | 0.6986 |
0.0001 | 68.0068 | 4899 | 2.0873 | 0.7260 |
0.1614 | 69.0068 | 4970 | 2.0189 | 0.7260 |
0.0001 | 70.0068 | 5041 | 2.5160 | 0.7123 |
0.0114 | 71.0068 | 5112 | 2.0018 | 0.7260 |
0.0823 | 72.0068 | 5183 | 2.2905 | 0.7260 |
0.0001 | 73.0068 | 5254 | 2.2782 | 0.7260 |
0.0 | 74.0068 | 5325 | 2.4495 | 0.6986 |
0.3044 | 75.0068 | 5396 | 2.4417 | 0.7123 |
0.0 | 76.0068 | 5467 | 2.5168 | 0.6849 |
0.0007 | 77.0068 | 5538 | 2.9406 | 0.6986 |
0.0001 | 78.0068 | 5609 | 2.6533 | 0.7123 |
0.0 | 79.0068 | 5680 | 2.4312 | 0.6986 |
0.0 | 80.0068 | 5751 | 2.5024 | 0.7123 |
0.0 | 81.0068 | 5822 | 2.4178 | 0.6986 |
0.0 | 82.0068 | 5893 | 2.5872 | 0.7123 |
0.0 | 83.0068 | 5964 | 2.0274 | 0.7671 |
0.1991 | 84.0068 | 6035 | 2.5663 | 0.6986 |
0.0 | 85.0068 | 6106 | 2.6205 | 0.6849 |
0.1705 | 86.0068 | 6177 | 2.7275 | 0.6575 |
0.0 | 87.0068 | 6248 | 2.9716 | 0.6438 |
0.0 | 88.0068 | 6319 | 2.9101 | 0.6438 |
0.0 | 89.0068 | 6390 | 2.4764 | 0.6986 |
0.0 | 90.0068 | 6461 | 2.5322 | 0.6986 |
0.0 | 91.0068 | 6532 | 2.7223 | 0.6986 |
0.0 | 92.0068 | 6603 | 2.6965 | 0.6849 |
0.0 | 93.0068 | 6674 | 2.6896 | 0.6849 |
0.0001 | 94.0068 | 6745 | 2.7115 | 0.7123 |
0.0 | 95.0068 | 6816 | 2.6126 | 0.6849 |
0.0 | 96.0068 | 6887 | 2.6572 | 0.6986 |
0.0 | 97.0068 | 6958 | 2.7067 | 0.6986 |
0.0 | 98.0068 | 7029 | 3.0455 | 0.6712 |
0.0 | 99.0068 | 7100 | 2.8097 | 0.6849 |
0.0 | 100.0068 | 7171 | 2.8568 | 0.6849 |
0.0 | 101.0068 | 7242 | 2.9188 | 0.6849 |
0.0 | 102.0068 | 7313 | 2.9678 | 0.6849 |
0.0 | 103.0068 | 7384 | 3.0187 | 0.6712 |
0.0 | 104.0068 | 7455 | 3.0423 | 0.6712 |
0.0 | 105.0068 | 7526 | 3.0592 | 0.6712 |
0.0 | 106.0068 | 7597 | 3.0764 | 0.6712 |
0.0 | 107.0068 | 7668 | 3.0949 | 0.6712 |
0.0 | 108.0068 | 7739 | 3.1251 | 0.6712 |
0.0 | 109.0068 | 7810 | 3.1508 | 0.6712 |
0.0 | 110.0068 | 7881 | 2.7330 | 0.6986 |
0.0 | 111.0068 | 7952 | 2.5366 | 0.7534 |
0.0 | 112.0068 | 8023 | 2.7911 | 0.7123 |
0.0 | 113.0068 | 8094 | 2.6362 | 0.7260 |
0.0 | 114.0068 | 8165 | 2.4667 | 0.6849 |
0.0 | 115.0068 | 8236 | 2.5247 | 0.6849 |
0.0 | 116.0068 | 8307 | 2.6152 | 0.6712 |
0.0 | 117.0068 | 8378 | 2.6153 | 0.7260 |
0.0 | 118.0068 | 8449 | 2.5005 | 0.7397 |
0.0 | 119.0068 | 8520 | 2.5096 | 0.7397 |
0.0 | 120.0068 | 8591 | 2.5173 | 0.7397 |
0.0 | 121.0068 | 8662 | 2.5226 | 0.7397 |
0.0 | 122.0068 | 8733 | 2.5313 | 0.7397 |
0.0 | 123.0068 | 8804 | 2.6165 | 0.7397 |
0.0 | 124.0068 | 8875 | 2.4491 | 0.7260 |
0.0 | 125.0068 | 8946 | 2.3421 | 0.7671 |
0.0 | 126.0068 | 9017 | 2.3381 | 0.7671 |
0.0 | 127.0068 | 9088 | 2.3615 | 0.7671 |
0.0 | 128.0068 | 9159 | 2.4429 | 0.7534 |
0.0 | 129.0068 | 9230 | 2.6266 | 0.7397 |
0.0 | 130.0068 | 9301 | 2.6281 | 0.7397 |
0.0 | 131.0068 | 9372 | 2.6321 | 0.7260 |
0.0 | 132.0068 | 9443 | 2.6350 | 0.7260 |
0.0 | 133.0068 | 9514 | 2.5210 | 0.7808 |
0.0 | 134.0068 | 9585 | 2.5572 | 0.7671 |
0.0 | 135.0068 | 9656 | 2.5419 | 0.7671 |
0.0 | 136.0068 | 9727 | 2.5428 | 0.7534 |
0.0 | 137.0068 | 9798 | 2.5649 | 0.7534 |
0.0 | 138.0068 | 9869 | 2.7969 | 0.7123 |
0.0 | 139.0068 | 9940 | 2.8026 | 0.7123 |
0.0 | 140.0068 | 10011 | 2.8066 | 0.7123 |
0.0 | 141.0068 | 10082 | 2.6293 | 0.7397 |
0.0 | 142.0068 | 10153 | 2.6859 | 0.7260 |
0.0 | 143.0068 | 10224 | 2.6886 | 0.7260 |
0.0 | 144.0068 | 10295 | 2.7223 | 0.7260 |
0.0 | 145.0068 | 10366 | 2.7872 | 0.7260 |
0.0 | 146.0068 | 10437 | 2.7887 | 0.7260 |
0.0 | 147.006 | 10500 | 2.7888 | 0.7260 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for beingbatman/MAE-CT-M1N0-M12_v8_split2_v3
Base model
MCG-NJU/videomae-large-finetuned-kinetics