Diffusion Model Alignment Using Direct Preference Optimization

Direct Preference Optimization (DPO) for text-to-image diffusion models is a method to align diffusion models to text human preferences by directly optimizing on human comparison data. Please check paper at Diffusion Model Alignment Using Direct Preference Optimization.

SD1.5 model is fine-tuned from stable-diffusion-v1-5 on offline human preference data pickapic_v2.

SDXL model is fine-tuned from stable-diffusion-xl-base-1.0 on offline human preference data pickapic_v2.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Dataset used to train bdsqlsz/dpo-sd-text2image-v1-fp16