resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t5.0_a0.5
This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6454
- Accuracy: 0.685
- Brier Loss: 0.4931
- Nll: 2.5040
- F1 Micro: 0.685
- F1 Macro: 0.6171
- Ece: 0.2996
- Aurc: 0.1499
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 13 | 1.4475 | 0.17 | 0.8966 | 8.4781 | 0.17 | 0.1126 | 0.2169 | 0.8299 |
No log | 2.0 | 26 | 1.4360 | 0.165 | 0.8955 | 8.4118 | 0.165 | 0.1097 | 0.2115 | 0.8359 |
No log | 3.0 | 39 | 1.3776 | 0.16 | 0.8842 | 6.1685 | 0.16 | 0.0633 | 0.2066 | 0.7780 |
No log | 4.0 | 52 | 1.3085 | 0.2 | 0.8701 | 6.0521 | 0.2000 | 0.0728 | 0.2332 | 0.7424 |
No log | 5.0 | 65 | 1.2551 | 0.18 | 0.8597 | 6.1887 | 0.18 | 0.0491 | 0.2265 | 0.7890 |
No log | 6.0 | 78 | 1.2118 | 0.2 | 0.8489 | 6.1706 | 0.2000 | 0.0631 | 0.2324 | 0.7179 |
No log | 7.0 | 91 | 1.1759 | 0.19 | 0.8418 | 6.1310 | 0.19 | 0.0428 | 0.2384 | 0.7431 |
No log | 8.0 | 104 | 1.1577 | 0.195 | 0.8339 | 5.7305 | 0.195 | 0.0535 | 0.2399 | 0.7126 |
No log | 9.0 | 117 | 0.9905 | 0.34 | 0.7692 | 6.1092 | 0.34 | 0.1567 | 0.2772 | 0.4320 |
No log | 10.0 | 130 | 0.9603 | 0.355 | 0.7541 | 5.7998 | 0.3550 | 0.1969 | 0.3021 | 0.4111 |
No log | 11.0 | 143 | 1.0839 | 0.255 | 0.8087 | 5.1464 | 0.255 | 0.1242 | 0.2389 | 0.6769 |
No log | 12.0 | 156 | 0.9374 | 0.39 | 0.7410 | 4.8415 | 0.39 | 0.2220 | 0.3037 | 0.4194 |
No log | 13.0 | 169 | 0.9974 | 0.33 | 0.7720 | 4.9023 | 0.33 | 0.1732 | 0.2863 | 0.6049 |
No log | 14.0 | 182 | 0.9393 | 0.435 | 0.7251 | 4.3102 | 0.435 | 0.2455 | 0.3276 | 0.3645 |
No log | 15.0 | 195 | 0.9554 | 0.39 | 0.7416 | 4.0361 | 0.39 | 0.2535 | 0.2721 | 0.5075 |
No log | 16.0 | 208 | 0.8012 | 0.465 | 0.6445 | 4.0129 | 0.465 | 0.2935 | 0.2551 | 0.2839 |
No log | 17.0 | 221 | 0.8033 | 0.53 | 0.6418 | 3.4959 | 0.53 | 0.3816 | 0.3242 | 0.2458 |
No log | 18.0 | 234 | 0.7740 | 0.57 | 0.6204 | 3.4062 | 0.57 | 0.4297 | 0.3139 | 0.2245 |
No log | 19.0 | 247 | 0.7736 | 0.6 | 0.6124 | 3.3460 | 0.6 | 0.4408 | 0.3017 | 0.1919 |
No log | 20.0 | 260 | 0.9105 | 0.555 | 0.6919 | 3.2115 | 0.555 | 0.4524 | 0.3604 | 0.3099 |
No log | 21.0 | 273 | 0.7416 | 0.61 | 0.5948 | 3.1349 | 0.61 | 0.5093 | 0.3176 | 0.2233 |
No log | 22.0 | 286 | 0.7318 | 0.655 | 0.5815 | 3.1259 | 0.655 | 0.5433 | 0.3478 | 0.1672 |
No log | 23.0 | 299 | 0.7799 | 0.59 | 0.6079 | 3.0590 | 0.59 | 0.4963 | 0.3340 | 0.2455 |
No log | 24.0 | 312 | 0.7886 | 0.665 | 0.6038 | 2.9965 | 0.665 | 0.5575 | 0.3773 | 0.1623 |
No log | 25.0 | 325 | 0.7083 | 0.66 | 0.5602 | 3.0752 | 0.66 | 0.5582 | 0.3283 | 0.1772 |
No log | 26.0 | 338 | 0.6882 | 0.63 | 0.5507 | 2.9022 | 0.63 | 0.5404 | 0.2963 | 0.1851 |
No log | 27.0 | 351 | 0.6774 | 0.66 | 0.5348 | 2.7876 | 0.66 | 0.5674 | 0.3095 | 0.1662 |
No log | 28.0 | 364 | 0.8111 | 0.675 | 0.6067 | 2.7578 | 0.675 | 0.5800 | 0.3905 | 0.1923 |
No log | 29.0 | 377 | 0.6803 | 0.645 | 0.5338 | 2.8666 | 0.645 | 0.5486 | 0.3054 | 0.1646 |
No log | 30.0 | 390 | 0.6835 | 0.685 | 0.5336 | 2.5944 | 0.685 | 0.5840 | 0.3119 | 0.1595 |
No log | 31.0 | 403 | 0.6810 | 0.655 | 0.5309 | 2.7112 | 0.655 | 0.5625 | 0.2879 | 0.1786 |
No log | 32.0 | 416 | 0.6848 | 0.685 | 0.5194 | 2.6456 | 0.685 | 0.5893 | 0.3314 | 0.1350 |
No log | 33.0 | 429 | 0.6631 | 0.695 | 0.5063 | 2.6286 | 0.695 | 0.5980 | 0.3198 | 0.1314 |
No log | 34.0 | 442 | 0.6639 | 0.69 | 0.5126 | 2.3890 | 0.69 | 0.5834 | 0.2990 | 0.1376 |
No log | 35.0 | 455 | 0.6736 | 0.675 | 0.5172 | 2.3291 | 0.675 | 0.6014 | 0.3148 | 0.1646 |
No log | 36.0 | 468 | 0.6648 | 0.68 | 0.5137 | 2.4549 | 0.68 | 0.6156 | 0.3316 | 0.1492 |
No log | 37.0 | 481 | 0.6543 | 0.7 | 0.5006 | 2.4275 | 0.7 | 0.6130 | 0.3041 | 0.1342 |
No log | 38.0 | 494 | 0.6514 | 0.675 | 0.5001 | 2.4064 | 0.675 | 0.5984 | 0.2963 | 0.1491 |
0.7462 | 39.0 | 507 | 0.6498 | 0.71 | 0.4988 | 2.5772 | 0.7100 | 0.6405 | 0.2980 | 0.1335 |
0.7462 | 40.0 | 520 | 0.6496 | 0.705 | 0.4964 | 2.5649 | 0.705 | 0.6386 | 0.3060 | 0.1380 |
0.7462 | 41.0 | 533 | 0.6562 | 0.68 | 0.5027 | 2.5816 | 0.68 | 0.6026 | 0.3100 | 0.1467 |
0.7462 | 42.0 | 546 | 0.6632 | 0.68 | 0.5089 | 2.4570 | 0.68 | 0.6112 | 0.2989 | 0.1500 |
0.7462 | 43.0 | 559 | 0.6437 | 0.7 | 0.4885 | 2.3648 | 0.7 | 0.6331 | 0.2741 | 0.1427 |
0.7462 | 44.0 | 572 | 0.6435 | 0.705 | 0.4894 | 2.4253 | 0.705 | 0.6370 | 0.3043 | 0.1390 |
0.7462 | 45.0 | 585 | 0.6457 | 0.695 | 0.4929 | 2.3611 | 0.695 | 0.6314 | 0.3021 | 0.1449 |
0.7462 | 46.0 | 598 | 0.6437 | 0.695 | 0.4912 | 2.3639 | 0.695 | 0.6370 | 0.2984 | 0.1436 |
0.7462 | 47.0 | 611 | 0.6466 | 0.685 | 0.4933 | 2.4859 | 0.685 | 0.6306 | 0.2936 | 0.1474 |
0.7462 | 48.0 | 624 | 0.6470 | 0.67 | 0.4950 | 2.3782 | 0.67 | 0.6070 | 0.3139 | 0.1547 |
0.7462 | 49.0 | 637 | 0.6477 | 0.675 | 0.4945 | 2.4509 | 0.675 | 0.6092 | 0.2852 | 0.1527 |
0.7462 | 50.0 | 650 | 0.6454 | 0.685 | 0.4931 | 2.5040 | 0.685 | 0.6171 | 0.2996 | 0.1499 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3
- Downloads last month
- 198
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for bdpc/resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t5.0_a0.5
Base model
microsoft/resnet-50