See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/zephyr-sft
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cf2fde8cf8e94dcd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cf2fde8cf8e94dcd_train_data.json
type:
field_input: distraction
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
eval_batch_size: 4
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: null
# load_best_model_at_end: true
early_stopping_patience: 2
save_steps: 100
eval_steps: 100
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: baby-dev/test-default-06-01
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00025
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1000
micro_batch_size: 4
mlflow_experiment_name: /tmp/cf2fde8cf8e94dcd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3a663e10-c37c-4bb9-a725-a32f441f1634
wandb_project: SN56-36
wandb_run: your_name
wandb_runid: 3a663e10-c37c-4bb9-a725-a32f441f1634
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
test-default-06-01
This model is a fine-tuned version of unsloth/zephyr-sft on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4388
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 3.0643 |
8.9435 | 0.0137 | 100 | 2.4706 |
8.9737 | 0.0273 | 200 | 2.4184 |
8.804 | 0.0410 | 300 | 2.3906 |
8.7399 | 0.0546 | 400 | 2.4476 |
8.8788 | 0.0683 | 500 | 2.3084 |
9.0255 | 0.0819 | 600 | 2.3585 |
9.2502 | 0.0956 | 700 | 2.4388 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for baby-dev/test-default-06-01
Base model
unsloth/zephyr-sft