SentenceTransformer based on sentence-transformers/clip-ViT-L-14

This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the yt-title-thumbnail-pairs dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): CLIPModel()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("babelmanish/clip-title-thumbnail-embeddings")
# Run inference
sentences = [
    'My $100,000+ Data Science Resume (what got me hired)',
    'The Mapper Algorithm | Overview & Python Example Code',
    'How to Build Data Pipelines for ML Projects (w/ Python Code)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

  • Datasets: yt-title-thumbnail-train and yt-title-thumbnail-valid
  • Evaluated with TripletEvaluator
Metric yt-title-thumbnail-train yt-title-thumbnail-valid
cosine_accuracy 1.0 1.0

Training Details

Training Dataset

yt-title-thumbnail-pairs

  • Dataset: yt-title-thumbnail-pairs at c1b9a13
  • Size: 53 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 53 samples:
    anchor positive negative
    type PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 9 tokens
    • mean: 15.04 tokens
    • max: 27 tokens
    • min: 10 tokens
    • mean: 15.3 tokens
    • max: 27 tokens
  • Samples:
    anchor positive negative
    Multimodal RAG: A Beginner-friendly Guide (with Python Code) What Nature Can Teach Us About Business...
    Detecting Power Laws in Real-world Data w/ Python Code
    I Quit My Job… Here’s How Much I Made 1 Year Later Persistent Homology
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

yt-title-thumbnail-pairs

  • Dataset: yt-title-thumbnail-pairs at c1b9a13
  • Size: 11 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 11 samples:
    anchor positive negative
    type PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 8 tokens
    • mean: 14.27 tokens
    • max: 21 tokens
    • min: 8 tokens
    • mean: 14.36 tokens
    • max: 19 tokens
  • Samples:
    anchor positive negative
    I Was Wrong About AI Consulting (what I learned) How to Make a Data Science Portfolio With GitHub Pages (2024)
    My $100,000+ Data Science Resume (what got me hired) The Mapper Algorithm
    4 Skills You Need to Be a Full-Stack Data Scientist Fine-Tuning Text Embeddings For Domain-specific Search (w/ Python)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 0.0001
  • num_train_epochs: 2

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss yt-title-thumbnail-train_cosine_accuracy yt-title-thumbnail-valid_cosine_accuracy
-1 -1 - - 0.9623 1.0
0.25 1 2.0056 - - -
0.5 2 1.9543 - - -
0.75 3 1.6954 - - -
1.0 4 0.7505 1.4916 - -
1.25 5 1.5534 - - -
1.5 6 1.2892 - - -
1.75 7 1.3283 - - -
2.0 8 0.3315 1.4990 - -
-1 -1 - - 1.0 1.0

Framework Versions

  • Python: 3.10.4
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.6.0
  • Accelerate: 0.26.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
428M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for babelmanish/clip-title-thumbnail-embeddings

Finetuned
(2)
this model

Dataset used to train babelmanish/clip-title-thumbnail-embeddings

Evaluation results