SentenceTransformer based on sentence-transformers/clip-ViT-L-14
This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the yt-title-thumbnail-pairs dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/clip-ViT-L-14
- Maximum Sequence Length: None tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): CLIPModel()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("babelmanish/clip-title-thumbnail-embeddings")
# Run inference
sentences = [
'My $100,000+ Data Science Resume (what got me hired)',
'The Mapper Algorithm | Overview & Python Example Code',
'How to Build Data Pipelines for ML Projects (w/ Python Code)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
yt-title-thumbnail-train
andyt-title-thumbnail-valid
- Evaluated with
TripletEvaluator
Metric | yt-title-thumbnail-train | yt-title-thumbnail-valid |
---|---|---|
cosine_accuracy | 1.0 | 1.0 |
Training Details
Training Dataset
yt-title-thumbnail-pairs
- Dataset: yt-title-thumbnail-pairs at c1b9a13
- Size: 53 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 53 samples:
anchor positive negative type PIL.JpegImagePlugin.JpegImageFile string string details - min: 9 tokens
- mean: 15.04 tokens
- max: 27 tokens
- min: 10 tokens
- mean: 15.3 tokens
- max: 27 tokens
- Samples:
anchor positive negative Multimodal RAG: A Beginner-friendly Guide (with Python Code)
What Nature Can Teach Us About Business...
Detecting Power Laws in Real-world Data
w/ Python Code I Quit My Job… Here’s How Much I Made 1 Year Later
Persistent Homology
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
yt-title-thumbnail-pairs
- Dataset: yt-title-thumbnail-pairs at c1b9a13
- Size: 11 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 11 samples:
anchor positive negative type PIL.JpegImagePlugin.JpegImageFile string string details - min: 8 tokens
- mean: 14.27 tokens
- max: 21 tokens
- min: 8 tokens
- mean: 14.36 tokens
- max: 19 tokens
- Samples:
anchor positive negative I Was Wrong About AI Consulting (what I learned)
How to Make a Data Science Portfolio With GitHub Pages (2024)
My $100,000+ Data Science Resume (what got me hired)
The Mapper Algorithm
4 Skills You Need to Be a Full-Stack Data Scientist
Fine-Tuning Text Embeddings For Domain-specific Search (w/ Python)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 0.0001num_train_epochs
: 2
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | yt-title-thumbnail-train_cosine_accuracy | yt-title-thumbnail-valid_cosine_accuracy |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.9623 | 1.0 |
0.25 | 1 | 2.0056 | - | - | - |
0.5 | 2 | 1.9543 | - | - | - |
0.75 | 3 | 1.6954 | - | - | - |
1.0 | 4 | 0.7505 | 1.4916 | - | - |
1.25 | 5 | 1.5534 | - | - | - |
1.5 | 6 | 1.2892 | - | - | - |
1.75 | 7 | 1.3283 | - | - | - |
2.0 | 8 | 0.3315 | 1.4990 | - | - |
-1 | -1 | - | - | 1.0 | 1.0 |
Framework Versions
- Python: 3.10.4
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0
- Accelerate: 0.26.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for babelmanish/clip-title-thumbnail-embeddings
Base model
sentence-transformers/clip-ViT-L-14Dataset used to train babelmanish/clip-title-thumbnail-embeddings
Evaluation results
- Cosine Accuracy on yt title thumbnail trainself-reported1.000
- Cosine Accuracy on yt title thumbnail validself-reported1.000