medium-e75-base-padded / modeling_aria.py
quintic's picture
add tokenizer; reformat
fd1489d
raw
history blame
22.8 kB
# This is lightly adapted from https://github.com/EleutherAI/aria/blob/main/aria/model.py
from typing import Optional, Union, Tuple
import torch
import torch.utils.checkpoint
from torch import nn as nn
from torch.nn import functional as F, CrossEntropyLoss
from transformers import Cache, DynamicCache, StaticCache
from transformers.utils import logging
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from .configuration_aria import AriaConfig
logger = logging.get_logger(__name__)
class AriaPreTrainedModel(PreTrainedModel):
config_class = AriaConfig
base_model_prefix = "aria"
supports_gradient_checkpointing = True
_no_split_modules = ["AriaBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_sdpa = True
_supports_flex_attn = False
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class AriaBlock(nn.Module):
def __init__(self, model_config: AriaConfig, layer_idx: int):
super().__init__()
self.drop_p = 0.0
self.n_heads = model_config.num_attention_heads
self.d_model = model_config.hidden_size
self.d_head = model_config.hidden_size // model_config.num_attention_heads
self.max_seq_len = model_config.max_position_embeddings
self.layer_idx = layer_idx
# Attention
self.mixed_qkv = nn.Linear(
in_features=self.d_model,
out_features=3 * self.d_model,
bias=False,
)
self.att_proj_linear = nn.Linear(
in_features=self.d_model,
out_features=self.d_model,
bias=False,
)
# FF Layer
self.ff_gate_proj = nn.Linear(
in_features=self.d_model,
out_features=self.d_model * model_config.ff_mult,
bias=False,
)
self.ff_up_proj = nn.Linear(
in_features=self.d_model,
out_features=self.d_model * model_config.ff_mult,
bias=False,
)
self.ff_down_proj = nn.Linear(
in_features=self.d_model * model_config.ff_mult,
out_features=self.d_model,
bias=False,
)
# Pre layer norms
self.norm1 = nn.LayerNorm(self.d_model)
self.norm2 = nn.LayerNorm(self.d_model)
def forward(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
attn_output, attn_weights, present = self._att_block(
self.norm1(x),
attention_mask,
freqs_cis,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
x = x + attn_output
x = x + self._ff_block(self.norm2(x))
outputs = (x, present)
if use_cache:
outputs = (x, present, attn_weights)
else:
outputs = (x, attn_weights)
return outputs
def _att_block(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
batch_size, seq_len, _ = x.shape
mixed_qkv = self.mixed_qkv(x)
xq, xk, xv = mixed_qkv.chunk(3, -1)
# Reshape for rotary embeddings
# Need contiguous for q, k since in-place RoPE cannot be applied on a view
xq = xq.reshape(batch_size, seq_len, self.n_heads, self.d_head).contiguous()
xk = xk.reshape(batch_size, seq_len, self.n_heads, self.d_head).contiguous()
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)
# apply_rotary_post_emb expects: (b_sz, s_len, n_head, d_head)
xq = apply_rotary_emb(xq, freqs_cis)
xk = apply_rotary_emb(xk, freqs_cis)
xq, xk, xv = map(lambda t: t.transpose(1, 2), (xq, xk, xv))
if past_key_values is not None:
cache_kwargs = {
# "sin": sin,
# "cos": cos,
# "partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
xk, xv = past_key_values.update(xk, xv, self.layer_idx, cache_kwargs)
# scaled_dot_product_attention expects: (b_sz, n_head, s_len, d_head)
att = F.scaled_dot_product_attention(
query=xq,
key=xk,
value=xv,
attn_mask=attention_mask,
is_causal=True,
)
# Reshape for out: (b_sz, s_len, n_head, d_head)
out = att.transpose(1, 2).contiguous()
out = out.view(batch_size, seq_len, self.n_heads * self.d_head)
if not output_attentions:
att = None
return self.att_proj_linear(out), att, past_key_values
def _ff_block(self, x: torch.Tensor):
return self.ff_down_proj(F.silu(self.ff_gate_proj(x)) * self.ff_up_proj(x))
class AriaModel(AriaPreTrainedModel):
"""Transformer decoder with no language model head.
Args:
model_config (ModelConfig): Model config settings.
"""
def __init__(self, model_config: AriaConfig):
super().__init__(model_config)
self.model_config = model_config
self.freqs_cis = None
self.tok_embeddings = nn.Embedding(
num_embeddings=model_config.vocab_size,
embedding_dim=model_config.hidden_size,
)
self.out_layer_norm = nn.LayerNorm(model_config.hidden_size)
self.encode_layers = nn.ModuleList()
for i in range(model_config.num_hidden_layers):
self.encode_layers.append(AriaBlock(model_config, i))
self.gradient_checkpointing = False
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
"""Forward pass of Transformer.
Args:
src (torch.tensor): Input to encoder block, of shape (batch_size,
seq_len, d_model).
attn_mask (Optional[torch.tensor]): Attention mask of shape
(batch_size, seq_len). Defaults to None.
past_kv (Optional[list[KVCache]]): a list of kv caches. The list index
corresponds to the layer index.
Returns:
torch.tensor: Model outputs with shape (batch_size, seq_len,
d_model).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.model_config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.model_config.output_hidden_states
)
return_dict = (
return_dict
if return_dict is not None
else self.model_config.use_return_dict
)
use_cache = use_cache if use_cache is not None else self.model_config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.tok_embeddings(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
seq_length = inputs_embeds.shape[1]
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + seq_length,
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
hidden_states = inputs_embeds
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
if self.freqs_cis is None:
self.freqs_cis = precompute_freqs_cis(
seq_len=self.model_config.max_position_embeddings,
n_elem=self.model_config.hidden_size
// self.model_config.num_attention_heads,
base=500000,
dtype=hidden_states.dtype,
).to(input_ids.device)
freqs_cis = self.freqs_cis[: input_ids.shape[1]]
kwargs = {
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"cache_position": cache_position,
}
next_decoder_cache = None
if self.gradient_checkpointing:
for layer in self.encode_layers:
def create_custom_forward(module):
def custom_forward(*args):
return module(*args)[0]
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
causal_mask,
freqs_cis,
**kwargs,
preserve_rng_state=True,
use_reentrant=True,
)
else:
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for layer in self.encode_layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states, causal_mask, freqs_cis=freqs_cis, **kwargs
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.out_layer_norm(hidden_states)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_attentions]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.model_config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.model_config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.model_config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype
)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length]
+ attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
return causal_mask
class AriaForCausalLM(AriaPreTrainedModel, GenerationMixin):
"""Transformer decoder with head for language modelling.
Args:
model_config (ModelConfig): Model config settings.
"""
def __init__(self, model_config: AriaConfig):
super().__init__(model_config)
self.model_config = model_config
self.max_seq_len = model_config.max_position_embeddings
self.model = AriaModel(model_config)
self.lm_head = nn.Linear(
model_config.hidden_size, model_config.vocab_size, bias=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
"""Forward pass of Transformer decoder with LM head."""
return_dict = (
return_dict
if return_dict is not None
else self.model_config.use_return_dict
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden = outputs[0]
lm_logits = self.lm_head(hidden)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def precompute_freqs_cis(
seq_len: int,
n_elem: int,
base: int = 500000,
dtype: torch.dtype = torch.bfloat16,
):
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
@torch.jit.script
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""
In-place RoPE. Credits to Katherine Crowson:
x shape (b_sz, s_len, n_head, d_head).
cos, sin shape (s_len, d_head // 2).
"""
d = x.shape[-1] // 2
cos = freqs_cis[..., 0][None, :, None]
sin = freqs_cis[..., 1][None, :, None]
x1, x2 = x[..., :d], x[..., d : d * 2]
tmp = x1.clone()
x1.mul_(cos).addcmul_(x2, sin, value=-1)
x2.mul_(cos).addcmul_(tmp, sin, value=1)
return x
__all__ = [
"AriaForCausalLM",
"AriaBlock",
"AriaModel",
"AriaPreTrainedModel",
]