File size: 22,762 Bytes
072784c
 
fd1489d
072784c
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
072784c
 
 
 
 
 
 
 
 
fd1489d
072784c
fd1489d
 
 
 
 
 
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
072784c
 
 
 
 
 
 
fd1489d
 
072784c
 
 
 
 
 
 
 
 
fd1489d
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
 
072784c
fd1489d
 
 
 
 
 
 
 
072784c
 
 
 
fd1489d
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
 
 
 
 
072784c
 
 
 
 
 
fd1489d
 
 
 
 
072784c
 
 
 
 
fd1489d
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
072784c
 
 
fd1489d
 
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
072784c
 
 
fd1489d
 
 
072784c
 
fd1489d
 
 
072784c
fd1489d
 
 
072784c
fd1489d
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1489d
 
 
072784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# This is lightly adapted from https://github.com/EleutherAI/aria/blob/main/aria/model.py

from typing import Optional, Union, Tuple

import torch
import torch.utils.checkpoint

from torch import nn as nn
from torch.nn import functional as F, CrossEntropyLoss

from transformers import Cache, DynamicCache, StaticCache
from transformers.utils import logging
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_attn_mask_utils import AttentionMaskConverter

from .configuration_aria import AriaConfig


logger = logging.get_logger(__name__)


class AriaPreTrainedModel(PreTrainedModel):
    config_class = AriaConfig
    base_model_prefix = "aria"
    supports_gradient_checkpointing = True
    _no_split_modules = ["AriaBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = False
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_sdpa = True
    _supports_flex_attn = False

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class AriaBlock(nn.Module):
    def __init__(self, model_config: AriaConfig, layer_idx: int):
        super().__init__()

        self.drop_p = 0.0
        self.n_heads = model_config.num_attention_heads
        self.d_model = model_config.hidden_size
        self.d_head = model_config.hidden_size // model_config.num_attention_heads
        self.max_seq_len = model_config.max_position_embeddings
        self.layer_idx = layer_idx

        # Attention
        self.mixed_qkv = nn.Linear(
            in_features=self.d_model,
            out_features=3 * self.d_model,
            bias=False,
        )
        self.att_proj_linear = nn.Linear(
            in_features=self.d_model,
            out_features=self.d_model,
            bias=False,
        )

        # FF Layer
        self.ff_gate_proj = nn.Linear(
            in_features=self.d_model,
            out_features=self.d_model * model_config.ff_mult,
            bias=False,
        )
        self.ff_up_proj = nn.Linear(
            in_features=self.d_model,
            out_features=self.d_model * model_config.ff_mult,
            bias=False,
        )
        self.ff_down_proj = nn.Linear(
            in_features=self.d_model * model_config.ff_mult,
            out_features=self.d_model,
            bias=False,
        )

        # Pre layer norms
        self.norm1 = nn.LayerNorm(self.d_model)
        self.norm2 = nn.LayerNorm(self.d_model)

    def forward(
        self,
        x: torch.Tensor,
        attention_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ):
        attn_output, attn_weights, present = self._att_block(
            self.norm1(x),
            attention_mask,
            freqs_cis,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            cache_position=cache_position,
        )

        x = x + attn_output
        x = x + self._ff_block(self.norm2(x))

        outputs = (x, present)
        if use_cache:
            outputs = (x, present, attn_weights)
        else:
            outputs = (x, attn_weights)

        return outputs

    def _att_block(
        self,
        x: torch.Tensor,
        attention_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ):
        batch_size, seq_len, _ = x.shape
        mixed_qkv = self.mixed_qkv(x)
        xq, xk, xv = mixed_qkv.chunk(3, -1)

        # Reshape for rotary embeddings
        # Need contiguous for q, k since in-place RoPE cannot be applied on a view
        xq = xq.reshape(batch_size, seq_len, self.n_heads, self.d_head).contiguous()
        xk = xk.reshape(batch_size, seq_len, self.n_heads, self.d_head).contiguous()
        xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)

        # apply_rotary_post_emb expects: (b_sz, s_len, n_head, d_head)
        xq = apply_rotary_emb(xq, freqs_cis)
        xk = apply_rotary_emb(xk, freqs_cis)
        xq, xk, xv = map(lambda t: t.transpose(1, 2), (xq, xk, xv))

        if past_key_values is not None:
            cache_kwargs = {
                # "sin": sin,
                # "cos": cos,
                # "partial_rotation_size": self.rotary_ndims,
                "cache_position": cache_position,
            }
            xk, xv = past_key_values.update(xk, xv, self.layer_idx, cache_kwargs)
        # scaled_dot_product_attention expects: (b_sz, n_head, s_len, d_head)
        att = F.scaled_dot_product_attention(
            query=xq,
            key=xk,
            value=xv,
            attn_mask=attention_mask,
            is_causal=True,
        )

        # Reshape for out: (b_sz, s_len, n_head, d_head)
        out = att.transpose(1, 2).contiguous()
        out = out.view(batch_size, seq_len, self.n_heads * self.d_head)

        if not output_attentions:
            att = None

        return self.att_proj_linear(out), att, past_key_values

    def _ff_block(self, x: torch.Tensor):
        return self.ff_down_proj(F.silu(self.ff_gate_proj(x)) * self.ff_up_proj(x))


class AriaModel(AriaPreTrainedModel):
    """Transformer decoder with no language model head.

    Args:
        model_config (ModelConfig): Model config settings.
    """

    def __init__(self, model_config: AriaConfig):
        super().__init__(model_config)
        self.model_config = model_config
        self.freqs_cis = None

        self.tok_embeddings = nn.Embedding(
            num_embeddings=model_config.vocab_size,
            embedding_dim=model_config.hidden_size,
        )

        self.out_layer_norm = nn.LayerNorm(model_config.hidden_size)
        self.encode_layers = nn.ModuleList()
        for i in range(model_config.num_hidden_layers):
            self.encode_layers.append(AriaBlock(model_config, i))

        self.gradient_checkpointing = False
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ):
        """Forward pass of Transformer.

        Args:
            src (torch.tensor): Input to encoder block, of shape (batch_size,
                seq_len, d_model).
            attn_mask (Optional[torch.tensor]): Attention mask of shape
                (batch_size, seq_len). Defaults to None.
            past_kv (Optional[list[KVCache]]): a list of kv caches. The list index
                corresponds to the layer index.

        Returns:
            torch.tensor: Model outputs with shape (batch_size, seq_len,
                d_model).
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.model_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.model_config.output_hidden_states
        )
        return_dict = (
            return_dict
            if return_dict is not None
            else self.model_config.use_return_dict
        )
        use_cache = use_cache if use_cache is not None else self.model_config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds"
            )

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.tok_embeddings(input_ids)

        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        seq_length = inputs_embeds.shape[1]
        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + seq_length,
                device=inputs_embeds.device,
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        hidden_states = inputs_embeds

        causal_mask = self._update_causal_mask(
            attention_mask,
            inputs_embeds,
            cache_position,
            past_key_values,
            output_attentions,
        )

        if self.freqs_cis is None:
            self.freqs_cis = precompute_freqs_cis(
                seq_len=self.model_config.max_position_embeddings,
                n_elem=self.model_config.hidden_size
                // self.model_config.num_attention_heads,
                base=500000,
                dtype=hidden_states.dtype,
            ).to(input_ids.device)
        freqs_cis = self.freqs_cis[: input_ids.shape[1]]

        kwargs = {
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "output_attentions": output_attentions,
            "output_hidden_states": output_hidden_states,
            "return_dict": return_dict,
            "cache_position": cache_position,
        }
        next_decoder_cache = None
        if self.gradient_checkpointing:
            for layer in self.encode_layers:

                def create_custom_forward(module):
                    def custom_forward(*args):
                        return module(*args)[0]

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    causal_mask,
                    freqs_cis,
                    **kwargs,
                    preserve_rng_state=True,
                    use_reentrant=True,
                )
        else:
            all_attentions = () if output_attentions else None
            all_hidden_states = () if output_hidden_states else None
            for layer in self.encode_layers:
                if output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)
                outputs = layer(
                    hidden_states, causal_mask, freqs_cis=freqs_cis, **kwargs
                )
                hidden_states = outputs[0]
                if use_cache is True:
                    next_decoder_cache = outputs[1]
                if output_attentions:
                    all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        hidden_states = self.out_layer_norm(hidden_states)
        next_cache = next_decoder_cache if use_cache else None

        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_attentions]
                if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        if self.model_config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = (
            past_key_values.get_seq_length() if past_key_values is not None else 0
        )
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if (
            self.model_config._attn_implementation == "sdpa"
            and not using_static_cache
            and not output_attentions
        ):
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.model_config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype
            )

        return causal_mask

    @staticmethod
    # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length),
                fill_value=min_dtype,
                dtype=dtype,
                device=device,
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(
                target_length, device=device
            ) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = (
                    causal_mask.clone()
                )  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = (
                    causal_mask[:, :, :, :mask_length]
                    + attention_mask[:, None, None, :]
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[
                    :, :, :, :mask_length
                ].masked_fill(padding_mask, min_dtype)

        return causal_mask


class AriaForCausalLM(AriaPreTrainedModel, GenerationMixin):
    """Transformer decoder with head for language modelling.

    Args:
        model_config (ModelConfig): Model config settings.
    """

    def __init__(self, model_config: AriaConfig):
        super().__init__(model_config)
        self.model_config = model_config
        self.max_seq_len = model_config.max_position_embeddings
        self.model = AriaModel(model_config)
        self.lm_head = nn.Linear(
            model_config.hidden_size, model_config.vocab_size, bias=False
        )

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ):
        """Forward pass of Transformer decoder with LM head."""
        return_dict = (
            return_dict
            if return_dict is not None
            else self.model_config.use_return_dict
        )
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        hidden = outputs[0]
        lm_logits = self.lm_head(hidden)

        lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shift_logits = lm_logits[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithPast(
            loss=lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


def precompute_freqs_cis(
    seq_len: int,
    n_elem: int,
    base: int = 500000,
    dtype: torch.dtype = torch.bfloat16,
):
    freqs = 1.0 / (
        base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
    )
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)

    return cache.to(dtype=dtype)


@torch.jit.script
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    """
    In-place RoPE. Credits to Katherine Crowson:
    x shape (b_sz, s_len, n_head, d_head).
    cos, sin shape (s_len, d_head // 2).
    """

    d = x.shape[-1] // 2
    cos = freqs_cis[..., 0][None, :, None]
    sin = freqs_cis[..., 1][None, :, None]
    x1, x2 = x[..., :d], x[..., d : d * 2]
    tmp = x1.clone()
    x1.mul_(cos).addcmul_(x2, sin, value=-1)
    x2.mul_(cos).addcmul_(tmp, sin, value=1)
    return x


__all__ = [
    "AriaForCausalLM",
    "AriaBlock",
    "AriaModel",
    "AriaPreTrainedModel",
]