|
--- |
|
language: |
|
- id |
|
license: apache-2.0 |
|
base_model: LazarusNLP/IndoNanoT5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- id_liputan6 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: liputan6-lora-8 |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: id_liputan6 canonical |
|
type: id_liputan6 |
|
config: canonical |
|
split: validation |
|
args: canonical |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 44.041 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# liputan6-lora-8 |
|
|
|
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2482 |
|
- Rouge1: 44.041 |
|
- Rouge2: 35.4021 |
|
- Rougel: 40.435 |
|
- Rougelsum: 42.6248 |
|
- Gen Len: 60.602 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.4611 | 1.0 | 63 | 0.4168 | 20.2294 | 15.1672 | 18.3462 | 19.5551 | 26.342 | |
|
| 0.6123 | 2.0 | 126 | 0.3030 | 42.4943 | 33.9837 | 39.042 | 40.9843 | 54.709 | |
|
| 0.4836 | 3.0 | 189 | 0.2516 | 39.2983 | 30.3972 | 36.1696 | 37.7681 | 48.258 | |
|
| 0.4256 | 4.0 | 252 | 0.2482 | 42.8202 | 33.9496 | 39.2137 | 41.343 | 54.56 | |
|
| 0.4014 | 5.0 | 315 | 0.2389 | 42.5107 | 33.6017 | 39.0118 | 41.0601 | 55.005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|