|
### Gradio app to run QA on a given website |
|
|
|
What does the app do : |
|
- Get input prompt (text or transcribed audio) |
|
- Similarity search in a vector DB, returns top k chunks |
|
- Run llm based on context (using basic prompt - langchain not used yet) |
|
- Return response and metadata (url, scores, text chunks...) |
|
|
|
Setup process: |
|
- vector store (FAISS) a given website (sitemap) using langchain |
|
- download a llm |
|
- containarise stt (faster-whisper) due to os incompatibility |
|
- build Gradio app |
|
|
|
To build Faster-whisper docker image name "fasterwhisper" |
|
|
|
`docker build -t . fasterwhisper` |
|
|
|
Create python env 'llama' |
|
``` |
|
conda create --name="llama" python=3.10 |
|
conda activate llama |
|
pip install -r requirements.txt |
|
``` |
|
|
|
To run the app: |
|
|
|
`bash run.sh` |
|
|
|
To push to hugging face (including large files) use this command: |
|
|
|
`git lfs migrate import --everything` |
|
|
|
`git add .; git commit -m "message"; git push -f origin` |