metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: The Philosophical Enigma of Large Language Models
- text: CONSTITUTIONAL AND LEGAL REGULATION OF THE STATE CIVIL SERVICE
- text: Qashio and YallaCompare launch 'Qashio Insurance'
- text: >-
Online Travel Accommodations Market Report 2024 Reveals The Global Number
Of Travel App Downloads Surpassed 3 Billion In 2023
- text: >-
The Procter & Gamble Company (NYSE:PG) Stock Position Decreased by
CarsonAllaria Wealth Management Ltd.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: OysterHR/gte-base-en-v1.5
SetFit with OysterHR/gte-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses OysterHR/gte-base-en-v1.5 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: OysterHR/gte-base-en-v1.5
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 8192 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amplyfi/gte-base-en-v1.5_annotations_cache_aggregated_multilabel")
# Run inference
preds = model("The Philosophical Enigma of Large Language Models")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 11.0917 | 30 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0017 | 1 | 0.4182 | - |
0.0833 | 50 | 0.2867 | - |
0.1667 | 100 | 0.25 | - |
0.25 | 150 | 0.2203 | - |
0.3333 | 200 | 0.1984 | - |
0.4167 | 250 | 0.1759 | - |
0.5 | 300 | 0.1555 | - |
0.5833 | 350 | 0.1336 | - |
0.6667 | 400 | 0.1306 | - |
0.75 | 450 | 0.1245 | - |
0.8333 | 500 | 0.121 | - |
0.9167 | 550 | 0.1166 | - |
1.0 | 600 | 0.1139 | - |
1.0833 | 650 | 0.1083 | - |
1.1667 | 700 | 0.102 | - |
1.25 | 750 | 0.0965 | - |
1.3333 | 800 | 0.1027 | - |
1.4167 | 850 | 0.1045 | - |
1.5 | 900 | 0.1069 | - |
1.5833 | 950 | 0.0935 | - |
1.6667 | 1000 | 0.0929 | - |
1.75 | 1050 | 0.0875 | - |
1.8333 | 1100 | 0.0906 | - |
1.9167 | 1150 | 0.0999 | - |
2.0 | 1200 | 0.0974 | - |
2.0833 | 1250 | 0.0877 | - |
2.1667 | 1300 | 0.0776 | - |
2.25 | 1350 | 0.0839 | - |
2.3333 | 1400 | 0.0895 | - |
2.4167 | 1450 | 0.0819 | - |
2.5 | 1500 | 0.0819 | - |
2.5833 | 1550 | 0.0913 | - |
2.6667 | 1600 | 0.0881 | - |
2.75 | 1650 | 0.0921 | - |
2.8333 | 1700 | 0.0839 | - |
2.9167 | 1750 | 0.0851 | - |
3.0 | 1800 | 0.088 | - |
3.0833 | 1850 | 0.0801 | - |
3.1667 | 1900 | 0.086 | - |
3.25 | 1950 | 0.0831 | - |
3.3333 | 2000 | 0.0747 | - |
3.4167 | 2050 | 0.0773 | - |
3.5 | 2100 | 0.0832 | - |
3.5833 | 2150 | 0.078 | - |
3.6667 | 2200 | 0.0856 | - |
3.75 | 2250 | 0.0797 | - |
3.8333 | 2300 | 0.0759 | - |
3.9167 | 2350 | 0.0846 | - |
4.0 | 2400 | 0.0833 | - |
4.0833 | 2450 | 0.0767 | - |
4.1667 | 2500 | 0.0787 | - |
4.25 | 2550 | 0.0743 | - |
4.3333 | 2600 | 0.077 | - |
4.4167 | 2650 | 0.0808 | - |
4.5 | 2700 | 0.0768 | - |
4.5833 | 2750 | 0.0808 | - |
4.6667 | 2800 | 0.0796 | - |
4.75 | 2850 | 0.077 | - |
4.8333 | 2900 | 0.0787 | - |
4.9167 | 2950 | 0.071 | - |
5.0 | 3000 | 0.0773 | - |
5.0833 | 3050 | 0.069 | - |
5.1667 | 3100 | 0.0795 | - |
5.25 | 3150 | 0.0748 | - |
5.3333 | 3200 | 0.075 | - |
5.4167 | 3250 | 0.0745 | - |
5.5 | 3300 | 0.076 | - |
5.5833 | 3350 | 0.0708 | - |
5.6667 | 3400 | 0.0788 | - |
5.75 | 3450 | 0.0803 | - |
5.8333 | 3500 | 0.0756 | - |
5.9167 | 3550 | 0.0737 | - |
6.0 | 3600 | 0.073 | - |
6.0833 | 3650 | 0.066 | - |
6.1667 | 3700 | 0.0735 | - |
6.25 | 3750 | 0.0733 | - |
6.3333 | 3800 | 0.0754 | - |
6.4167 | 3850 | 0.0717 | - |
6.5 | 3900 | 0.0772 | - |
6.5833 | 3950 | 0.0695 | - |
6.6667 | 4000 | 0.0734 | - |
6.75 | 4050 | 0.0709 | - |
6.8333 | 4100 | 0.0776 | - |
6.9167 | 4150 | 0.073 | - |
7.0 | 4200 | 0.0732 | - |
7.0833 | 4250 | 0.069 | - |
7.1667 | 4300 | 0.0685 | - |
7.25 | 4350 | 0.0681 | - |
7.3333 | 4400 | 0.075 | - |
7.4167 | 4450 | 0.0751 | - |
7.5 | 4500 | 0.075 | - |
7.5833 | 4550 | 0.0686 | - |
7.6667 | 4600 | 0.07 | - |
7.75 | 4650 | 0.0716 | - |
7.8333 | 4700 | 0.0749 | - |
7.9167 | 4750 | 0.0687 | - |
8.0 | 4800 | 0.0753 | - |
8.0833 | 4850 | 0.0661 | - |
8.1667 | 4900 | 0.0662 | - |
8.25 | 4950 | 0.0725 | - |
8.3333 | 5000 | 0.0701 | - |
8.4167 | 5050 | 0.0702 | - |
8.5 | 5100 | 0.0755 | - |
8.5833 | 5150 | 0.0698 | - |
8.6667 | 5200 | 0.0686 | - |
8.75 | 5250 | 0.0659 | - |
8.8333 | 5300 | 0.0758 | - |
8.9167 | 5350 | 0.0702 | - |
9.0 | 5400 | 0.0721 | - |
9.0833 | 5450 | 0.071 | - |
9.1667 | 5500 | 0.0652 | - |
9.25 | 5550 | 0.0657 | - |
9.3333 | 5600 | 0.0742 | - |
9.4167 | 5650 | 0.0725 | - |
9.5 | 5700 | 0.066 | - |
9.5833 | 5750 | 0.068 | - |
9.6667 | 5800 | 0.0709 | - |
9.75 | 5850 | 0.0645 | - |
9.8333 | 5900 | 0.0669 | - |
9.9167 | 5950 | 0.0696 | - |
10.0 | 6000 | 0.0692 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}