|
import os |
|
from shutil import copyfile |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import tokenizers |
|
from tokenizers import models, pre_tokenizers, decoders, trainers |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = {} |
|
|
|
|
|
class OBITokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
model_input_names = ["input_ids", "attention_mask"] |
|
_auto_class = "AutoTokenizer" |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token="</s>", |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.tokenizer = tokenizers.Tokenizer(models.BPE()) |
|
self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel() |
|
self.tokenizer.decoder = decoders.ByteLevel() |
|
self.tokenizer.post_processor = tokenizers.processors.ByteLevel() |
|
self.tokenizer.enable_truncation(max_length=512) |
|
self.tokenizer.enable_padding(max_length=512, pad_token="[PAD]") |
|
|
|
self._no_prefix_space_tokens = None |
|
|
|
@property |
|
def no_prefix_space_tokens(self): |
|
if self._no_prefix_space_tokens is None: |
|
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size))) |
|
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")} |
|
return self._no_prefix_space_tokens |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return len(self.tokenizer.get_vocab()) |
|
|
|
@property |
|
def bos_token_id(self) -> Optional[int]: |
|
return self.tokenizer.token_to_id("<s>") |
|
|
|
@property |
|
def eos_token_id(self) -> Optional[int]: |
|
return self.tokenizer.token_to_id("</s>") |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text): |
|
"""Returns a tokenized string.""" |
|
encoding = self.tokenizer.encode(text) |
|
return encoding.ids |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.tokenizer.token_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.tokenizer.id_to_token(index) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) into a single string.""" |
|
return self.tokenizer.decode(tokens) |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
|
|
|
|
trainer = trainers.BpeTrainer(special_tokens=["<unk>", "<s>", "</s>","[PAD]"]) |
|
self.tokenizer.train(trainer=trainer, files=[out_vocab_file]) |
|
|
|
self.tokenizer.save(out_vocab_file) |
|
|
|
return (out_vocab_file,) |
|
|